
OLSH: Occurrence-based Locality Sensitive
Hashing

Mohammadhossein Toutiaee
Computer Science Department

The University of Georgia

415 Boyd, 200 D.W. Brooks Drive, Athens, USA

hossein@uga.edu

Abstract—Probabilistic data structures are widely used with
large amounts of data. Acceptable error or probability of failure
can be controlled by statistic inference methods applied in many
domains. Locality sensitive hashing (LSH) is an efficient data
structure for a nearest neighbor search in high-dimensional data
as an alternative to other exact Nearest Neighbor Searches such
as R-tree. The basic idea is to provide probabilistic guarantees
of solving approximate nearest neighbor searches in rich feature
spaces. Using different buckets in a hash table has been proposed
when running in a main memory structure (multi probe LSH);
however, this method is not optimized for wide datasets such
as streaming data. A proposed new approach takes advantage
of throwing different bins and enhances LSH by reducing the
failure rates of a similarity search.

Index Terms—NN; LSH; MapReduce; Probability; Theory;
”Short Research Paper”

I. INTRODUCTION

The nearest neighbor method can be used in classification

and regression problems. Nearest neighbor algorithms search

in various parts of a high-dimensional dataset by query-

ing similar data points. The Nearest Neighbor algorithm is

being applied in many application domains with simple to

complex structure. Pattern recognition, image classification,

text mining and information retrieval, marketing analysis and

DNA sequencing are just a few examples. This algorithm is

quite useful in many applications. Complexity is one of the

weak points of nearest neighbor. Searching the exact nearest

neighbor point in a space using brute force search would result

in O(N) running time, which is inefficient to implement in a

large space. Additionally, searching the K th nearest neighbor

would take O(NlogK) provided that a priority queue is used

as the data structure. In both cases, O(N) is an inevitable

part of the algorithm running time, which is not applicable

for Large N. However, tree-based data structures enable more

efficient pruning of the search space. R-tree[8], K-D-tree[2],

SR-tree[11], X-tree[3] and M-tree[5] are data type indexing

methods returning the exact query results in O(NlogN) time

for constructing the tree. The time complexity of all tree-

based structures is between O(logN) and O(N) depending on

how well the tree was constructed previously. Although the

logarithmic implementation time will be given under certain

conditions regarding the distribution of points, the running

time is still exponential in a dimension (d). Therefore, the

complexity in tree-based methods is heavily reliant on how

points are spread in a low-dimension space. In order to prevent

exponential running time complexity for the Nearest Neighbor

Search in a high-dimension space, Near-Neighbor Search

methods are in fact idea for finding approximate nearest-

neighbor pairs in certain ways without looking at all pairs.

Locality sensitive hashing (LSH) is one of the data structures

that has been recently used in exploring various research

topics. This paper introduces a new enhanced LSH based on a

distributed algorithm showing how efficient this approach is.

II. RELATED WORK

Indyk et al. [9] proposed locality sensitive hashing (LSH)

based on the idea that a random hash function g exists on

space Rd such that for any points p and q:

Assume � = {g :Rd −→Zk} is a set of hash functions

such as:

g(v) = (h1(v), ..., hk(v))

where the functions hi for i ∈ [1, k] is a subset of LSH function

set H = {h :Rd −→Z} called (r1, cr, p1, p2) for any q, v such

that:

Pr(h(q) = h(v)) ≥ p1, when‖q − v‖ ≤ r (1)

Pr(h(q) = h(v)) < p2, when‖q − v‖ > cr (2)

where c > 1, p1 > p2, r and cr are the decision and prune

boundary, respectively. Intuitively, the pair q and v will more

likely be hashed to the same value if their distance is within

r, and less likely if their distance is greater than prune value

cr.

Charikar [4] introduced ”Hyperplane LSH” heavily inspired

by Goemans et al. [7], and the method only works for a

spherical space. Geomans’s method is based on splitting a

sphere by a hyperplane randomly. Multi-probe LSH [13] was

proposed to maximize the chance of collision between a pair

of near data points by binning the space with random buckets.

This method merely queries which bucket is more likely to

contain relevant data points. A posteriori multi-probe LSH [10]

as an extension to Multiprobe takes advantage of the likelihood

of each bucket, turning to the probability of containing similar

Int'l Conf. on Advances in Big Data Analytics | ABDA'17 | 57

ISBN: 1-60132-448-0, CSREA Press ©

points incorporating a prior knowledge obtained from training

data. Both Multiprobe and a posteriori LSH tend to favor

a higher false negative for low storage overheads. Voronoi-

based locality sensitive hashing [12] partitions the space into a

Voronoi diagram by random hash functions; however, backing

to Voronoi diagram partitioning space becomes computation-

ally inefficient as the dataset increases. Although LSH Forest

[1] attempts to enhance indexing technique in high-dimension

data, this technique was only designed for Hamming distance

[14], and to use other distance functions is still challenging.

Three approaches addressing drawbacks of the previous

work will be presented in this paper. First, the false negative

of searching similar points would be enhanced using multi

LSH tables. Second, distance functions are not used in this

technique. Last, but not least, a distributed algorithm will be

introduced to boost the query time.

III. PROBLEM SETUP

The objective is to search near-neighbor data points in a

given high-dimension space using a global voting function

V (., .) to obtain a similarity between a query q and a point v.

Accordingly, the m near-neighbor search will return m desired

points that are the most similar objects (data-points) among

all the data in a dataset using the global voting function V .

Eventually, locality sensitive hashing as a real competitor to

the tree-based structures could diminish the search space to

a subset of data points binned by some random buckets. The

random buckets are constructed by some random lines h in

a coordinate space (or random hyperplanes hd in a spherical

space). A ”score” for each point can translate each line h (or

hyperplane hd) into a binary index. And at the end, a hash

table is created using an h-bit binary vector for each point as

a bucket index.

IV. MOTIVATION

First and foremost, the traditional LSH methods mentioned

above only depend on some distance function. The short-

coming that exists in applying those methods would result in

using very limited distance functions. Therefore, the ultimate

purpose of using this new method is to remove any distance

functions (including all metric distances) and to search for

near neighbors in the space. The method is only based on a

number of point occurrences in a set of multi LSH tables. In

essence, this method involves finding the most repeated point

as an approximate nearest neighbor (or similarly, finding the

most repeated points as K near-neighbor) after having counted

the global number of occurrences per each point.

LSH methods can be applied fast with an accepted error rate.

However, this work shows the improvement in the accuracy

of searching near-neighbor by reducing the probability of

not finding a near-neighbor with a proof given below. The

false negatives could be decreased by constructing more hash

tables with random buckets. Multi-tables hash function tends

to outperform one table LSH by taking advantage of occurring

independent events. Additionally, the running time increases as

a result of emitting more hash tables; this would be lessened

by proposing a distributed multi-hash table approach using

MapReduce.

V. OLSH

Occurrence-based LSH is a significantly fast approach for

Near Neighbor Search in a high-dimensional dataset. The

technique provides an accepted error rate using multiple tables

for locality sensitive hashing. In the LSH technique, as the

number of buckets increases, the probability of not finding

the near neighbor decreases. Accordingly, a smaller error rate

would be obtained as a result of using more hashing tables:

Proof: Assume we search bins 1 bit off from query.

LSHh=1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 1 - Pr(same bin) - Pr(1 bin off)

= 1 - Pr(no split) - Pr(1 split)

= 1-(1-δ)h − hδ(1− δ)h−1

δ : Probability of split

(3)

LSHh>1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 1 - Pr(same bin)h+1

= 1 - Pr(no split)h+1

= 1-(1-δ)h+1

δ : Probability of split

(4)

VI. EVALUATION

In (Figure 1c), the comparison between multiple hash tables

(blue) and one hash table (red) indicates that the probability of

not finding the near-neighbor indicated by the red line is lower

than the blue line (when h = 3). Similarly, in (Figure 1d),

the gap between the blue line and the red line becomes more

meaningful; therefore, we have a lower chance of not finding

the near-neighbor (a higher probability of finding the near-

neighbor) when h = 10. The higher chance of finding the near-

neighbor arises from the probability of falling off of similar

points in different bins in an exponential fashion.

Algorithm 1 MR-MultiLSH-Tables

INPUT: Set of data points

OUTPUT: Top near-neighbor points

1: Class RandomBins
2: method RndBin({ �x1, ..., �xn}, h, b)
3: for h = 1 To H
4: Set �bi, ..., �bj to be distinct randomly binned inputs from

�x1, ..., �xn

5: end for
6:

7: Class Mapper
8: method Map(data(key), value)
9: write (data(key), value)

10:

11: Class Reducer
12: method ReduceCount(data(key), value)
13: write None, (sum(values), data(key))
14: method ReduceMax(data(key), value)
15: write max(values)
16:

58 Int'l Conf. on Advances in Big Data Analytics | ABDA'17 |

ISBN: 1-60132-448-0, CSREA Press ©

(a) h = 1 hash table (b) h = 3 hash tables

(c) Pr(h = 3) (d) Pr(h = 10)

Fig. 1: Multi LSH tables would harness the near-neighbor search by reducing false negatives in the result. MapReduce can make the search

fast among the space. (a), Binning a hash table with random bins. (b), Multi LSH tables for h = 3 tables. (c), Probability of not finding the

near-neighbor for one hash table (blue) and for multiple hash tables (red) when the h = 3. Obviously the red curve is lower than the blue

curve, indicating the lower error. (d), This plot indicates that the higher the number of tables, the lower the error rate. (e) and (d) show the

MapReduce schema and the algorithm, respectively [6].

Fig. 2: : This diagram is showing the MapReduce schema and the algorithm.

VII. CONCLUSION

The expectation of finding Near Neighbors in a high-

dimension data would increase exponentially fast using multi-

ple hash tables. OLSH, as a new technique, takes that advan-

tage and reduces its time complexity using the MapReduce

approach. Moreover, the limitation of using some distance

functions in old techniques is eliminated because in OLSH

the near points are only detected in an ON/OFF mode.

Int'l Conf. on Advances in Big Data Analytics | ABDA'17 | 59

ISBN: 1-60132-448-0, CSREA Press ©

REFERENCES

[1] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: Self-tuning indexes
for similarity search. In Fourteenth International World Wide Web
Conference (WWW 2005), 2005.

[2] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, Sept. 1975.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-tree: An index struc-
ture for high-dimensional data. In Proceedings of the 22th International
Conference on Very Large Data Bases, VLDB ’96, pages 28–39, San
Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[4] M. S. Charikar. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the Thiry-fourth Annual ACM Symposium on
Theory of Computing, STOC ’02, pages 380–388, New York, NY, USA,
2002. ACM.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method
for similarity search in metric spaces. In Proceedings of the 23rd
International Conference on Very Large Data Bases, VLDB ’97, pages
426–435, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers
Inc.

[6] E. Fox and C. Guestrin. Clustering and retreival. In Machine Learning
Specialization, Coursera, 2016.

[7] M. X. Goemans and D. P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming. J. ACM, 42(6):1115–1145, Nov. 1995.

[8] A. Guttman. R-trees: A dynamic index structure for spatial searching.
SIGMOD Rec., 14(2):47–57, June 1984.

[9] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, STOC ’98, pages
604–613, New York, NY, USA, 1998. ACM.

[10] A. Joly and O. Buisson. A posteriori multi-probe locality sensitive
hashing. In Proceedings of the 16th ACM International Conference
on Multimedia, MM ’08, pages 209–218, New York, NY, USA, 2008.
ACM.

[11] N. Katayama and S. Satoh. The sr-tree: An index structure for high-
dimensional nearest neighbor queries. SIGMOD Rec., 26(2):369–380,
June 1997.

[12] T. L. Loi, J. P. Heo, J. Lee, and S. e. Yoon. Vlsh: Voronoi-based
locality sensitive hashing. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5345–5352, Nov 2013.

[13] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh:
Efficient indexing for high-dimensional similarity search. In Proceedings
of the 33rd International Conference on Very Large Data Bases, VLDB
’07, pages 950–961. VLDB Endowment, 2007.

[14] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov. Hamming distance
metric learning. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 1061–1069. Curran Associates, Inc., 2012.

60 Int'l Conf. on Advances in Big Data Analytics | ABDA'17 |

ISBN: 1-60132-448-0, CSREA Press ©

