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Abstract—Classical vibration signals analysis techniques are
developed assuming idealized conditions from which data is
collected. In reality, due to physical constraints imposed by
the operating environment, the vibration data is usually filtered
by thresholding into segments which are then down-sampled,
therefore not readily amenable to the application of classical tech-
niques. In this paper, we introduce probabilistically reconstructed
signals to represent this particular class of data, and show that
the application of classification methods on the reconstructed
signal is straightforward with reasonable accuracy.

Index Terms—signal analysis; fault diagnosis; classification
algorithms; probabilistic signals representation.

I. INTRODUCTION

In most vibration signals analysis literature, analytic meth-

ods are developed based on idealized scenarios where the

signals are recorded continuously at sufficient sampling rates.

The analysis techniques are then expanded by tweaking the

assumptions that underpin the theory, e.g. techniques are

developed to account for over- or under-sampling of data.

Fourier-transformed-based and Wavelet-based techniques are

commonly used in these setup [1].

In reality, vibration signals collection mechanisms vary

across different domains, and so the aforementioned analysis

methods cannot be readily applied, due to possibly large gaps

in data and extreme under-sampling of the data, or both. This

type of data is especially prevalent in the avionics domain,

where while there are vibration sensors on the aircrafts that

collect data continuously, the onboard data bus is limited in

bandwidth and the data storage device is limited in storage

capacity. As a result the collected vibration data are usually

highly fragmented due to thresholding, and the data is further

processed by under-sampling to a predeteremined number of

data points in order to save storage space.

There has been work done to address irregularly-sampled

data [16], and separately, to address under-sampled data [9].

To the best of our knowledge, there has been no serious

treatment of data in literature which are both irregularly-

sampled and massively under-sampled. The techniques that

we have come across from the field analysts in the avionics

domain have all assumed the classical signals processing

techniques, such as Fourier-Transform based analyses, are

sufficient, but often end up with mixed results. We present

the probabilistically reconstructed signal, or PRS, which is a

probabilistic representation of the collected vibration signals,

and show that this representation can be used in conjunction

with machine learning techniques to detect faults from sub-

optimally sampled, highly fragmented data.

II. BACKGROUND AND RELATED WORK

The most basic technique to determine abnormal vibration

is to establish a baseline using the Root Mean Square (RMS)

or Crest Factor of the vibration levels of the operating envi-

ronment; the system is considered to have a fault when the

vibration exceeds some predetermined threshold.

Fourier-analytic based methods are also tools of choice

when it comes to fault diagnosis. For example, time waveform

analysis and frequency spectral analysis rely on extensive use

of the Fourier transform to shuttle the signals between the time

and frequency domains to detect faults; in particular, harmonic

analysis is a cornerstone of these type of methods [1].

High frequency detection is yet another method that’s used

to detect faults in rotating machinery. The idea is that cracking

or abrasive wear of the rotating element generates high stress

waves, which can then be used as signatures to detect faults

[2].

On the other hand, enveloping [3] is a sophisticated tech-

nique that was developed to uncover low frequency fault sig-

nals, which relies on determining the unique pass frequencies

at which various faults can happen. Most enveloping methods

seek to determine the optimal window to discern particular

faults.

Wavelet-based methods are also popular. While they ad-

dress many of the short-comings of Fourier-analytic methods,

wavelet methods rely on finding the proper bases to be

effective [4]. Still, there were some successes using wavelet-

based methods combined with machine learning techniques

[5].

The above techniques presume the signals are sampled

sufficiently at evenly spaced intervals. With irregular sampling,

the classical FFT techniques are modified into the Non-

Uniform Discrete Fourier Transform (NDFT) [16] to handle

non-uniformly sampled data. Additionally, there are a slew of

other Non-NDFT methods developed for irregularly sampled

data [6]–[8], which arises naturally in many situations, such

as astronomy and geophysics. Moreover, the treatment of

reasonably under-sampled data is well-understood [9].
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Underlying all of the described techniques is the assumption

that there are enough data points so as to recover some

properties of the original signal. It is unclear how one should

proceed if the collected data is both irregularly sampled (due

to thresholding) followed by a down-sampling procedure from

which the vast majority of the original signal is lost. In this

paper we treat the data from a machine learning perspective.

That is, every piece of collected signal fragments is a sample
from the original signal. Ideally, with enough fragments,

some properties of the original signal can be recovered via

bootstrapping techniques.

III. METHODOLOGY

A. Suboptimally Collected Vibration Signals

Typically, vibration signals are modeled by

η(τ) = σ(τ) + ν(τ),

where σ is the unadulterated signal emitted by the sensors,

and ν models noise. Given a measurement period m, the full

vibration signals are represented by the sequence

(s0, s1, ..., si, ..., sm),

where si = η(τi), 0 ≤ i ≤ m.

In many real world scenarios, the limitations imposed by the

operating environment, such as data storage capacity, prevent

the full, continuous signals from being collected. Often times,

the data is collected only when the signal value is above certain

predefined threshold t, e.g. when a fault is thrown. Since the

original signal η is recorded only when a threshold is crossed,

the observed signal is a collection of fragmented sequences

{f0, f1, ..., fi, ...}, where fi’s are subsequences of the original

signal. See Figure 1 for an example of how signal fragments

are formed.

Fig. 1. Signal fragments as determined by threshold values

In austere data collection environments, such as helicopters,

the data storage is so minimal that only certain number of data

points d are stored after the threshold is crossed. In this case,

the fragmented sequences fi’s are artificially down-sampled

to exactly d evenly spaced data points. The recorded signals

then become:

signaldown−sample = {f0, f1, ..., fi, ...}, (1)

where length(fi) = d and for all element values si in fi,
|si| ≥ t. In this paper, we consider only the type of signals

described by Equation (1).

B. Probabilistically Reconstructed Signal

Clearly, the classical signals processing techniques cannot

be applied as is to the thresholded and down-sampled data as

described. However, with enough samples of the data, we may

still recover enough information so that classifications can still

be performed with reasonable accuracy.

To understand the problem, we examine (1) more closely.

First, note that the length of the actual sampling period in (1)

is different for every fi due to the thresholding procedure. So

while there are exactly d data points in every fi, those data

points may not be sampled at the same rate; more precisely, if

the sampling period for fi is w, then the sampling rate for fi
is exactly d/w. Secondly, the occurrence of fi’s are aperiodic;

that is, the signals cross threshold t irregularly, possibly due

to external forces, and therefore the time between successive

fi’s is aperiodic. Without any prior information regarding the

underlying signal generation processes, there may be too much

information loss from the observed values for signals analysis

using classical techniques.

Instead, we treat (1) as values sampled from some dis-

tributions D·,t(·) such that for all element values s in fi,
s ∼ D·,t(·), |s| ≥ t. To achieve this, we first assign the time

at which the values are sampled some ordinal values which

are consistent across all fi’s in (1). We then take all fi’s and

create a probabilistically reconstructed signal (PRS), such that

for every ordinal time value o, there is a distribution Do,t(·),
so that for all elements s in fo, s ∼ Do,t. More precisely, a

PRS is

PRS = (s0,t, s1,t, ..., si,t, ..., sn,t), (2)

where |si,t| ≥ t, si,t ∼ Di,t(·), and n is the largest ordinal

value.

C. Sampling Procedure

Informally, the PRS defines a distribution for every time

point o in the aggregated signals space. The PRS then defines

a probabilistic model, in which a signal can be sampled by

bootstrapping at every time value. In this sense, the PRS is

artificially augmenting the signals space in order to generate

more samples to train the classifier.

The sampling procedure from the PRS is straight forward.

For every ordinal value o on the time axis, a value is

drawn from the associated distribution Do,t. Since the signal

fragments may be very sparse, the resulting PRS can be

extremely sparse as well. For example, note that in Figure 2

100 Int'l Conf. Data Mining |  DMIN'17  |

ISBN: 1-60132-453-7, CSREA Press ©



Fig. 2. The distribution of values at every time point, for every fragment in
Fig. 1. Conceptually, the fragments are superimposed on top of each other, and
this figure is the result. Now every time point becomes a discrete distribution
from which to bootstrap.

the distribution of values becomes thinner as the ordinal time

value increases. Realistically there may be many gaps where

there simply arent any values for those times; in those cases

the distributions is replaced with a constant value consistent

with the data, such as the mean or median values.

IV. EXPERIMENTS

We take 3 publicly available vibration data sets with fault

diagnosis information, and simulate the conditions in which

some proprietary data sets are collected and processed. First,

we remove all data points with absolute values below some

threshold t, so that the original signal is turned into a collection

fragmented signals fi, à la Equation (1). Second, for every

fi in the collection, the signals are further down-sampled

so that exactly d evenly spaced data points remain in every

fragment. Finally, if a segment does not contain d points after

thresholding, it is dropped from the training data set.

In the following experiments, we vary threshold values t
and length of signal fragments d to study the performance of

PRS. For each data set, we take the down-sampled data and

determine the classification accuracies with cross-validation as

well as a held-out test data set. As a basis of comparison, we

also determine the baseline classification performance without

PRS. Random Forest classification is used due to its scale-

invariant properties. In each of the experiments, we also note

the percentage of the original signal that remains after the

thresholding and down-sampling procedures, in order to show

the degradation of the original signal.

A. Data Sets

The MFPT data set [10] is made up of three sets of bearing

vibration data: 1) a baseline set, sampled at 97656 Hz for

6 seconds in each file; 2) an outer race faults set, sampled

at 48828 Hz for 3 seconds in each file; and 3) an inner race

faults set, sampled at 48828 Hz for 3 seconds in each file. The

data points come from a single-channel radial accelerometer.

There are additional data files included in the MFPT data set,

but they are not used in the experiments. The data sets used in

the experiment contains a total of 4541004 data points, before

thresholding and down-sampling procedures.

The Bearing Fault data set [11] is made up of radial

vibration measurements on a bearing housing of a test rig,

sampled at 51200 Hz, and contains 2 sets of fault data, inner

and outer race bearing faults respectively, each with 10 seconds

worth of data. The data set contains a total of 1024000 data

points.

The High Speed Gear Fault data set [12] is made up of

radial vibration measurements taken from a 3MW wind turbine

pinion gear, and contains a faulty data set and a baseline data

set. The data files contain 6 seconds of measurements sampled

at 97656 Hz. The data set contains a total of 14062464 data

points.

B. Results

1) MFPT: See Figures 3 and 4 for classification results

of the MFPT data set. See Table I for a perspective on

how the original signal has degraded under thresholding and

down-sampling. It is clear that the PRS method is able to

capture the intrinsic properties of the original signal, since

the classification accuracy is extremely high even when only

0.18% of the original data is present. Comparatively, the

baseline classification performs quite poorly.

Fig. 3. Classification accuracy of MFPT Data by varying length of signal
fragments d

2) Bearing Fault: See Figures 5 and 6 and Table II for

results of the Bearing Fault data set. Overall, the PRS performs

better than the baseline classifier when d is varied, although

when d is small, the performance of PRS tends to be uneven.

In particular, the classification of the test set experiences wild

swings at smaller values of d. We also note that when at d =
100 the dramatic drop of the baseline classifier, and the uptick
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Fig. 4. Classification accuracy of MFPT Data by varying threshold values

Length of Down-Sampled Signals, d Pct. of Original Data
20 3.45%
30 1.61%
40 0.82%
50 0.40%
60 0.24%
70 0.18%

TABLE I
PERCENTAGE OF RETAINED MFPT DATA, AS A RESULT OF

THRESHOLDING AND DOWN-SAMPLING

in the classification accuracy of the PRS. On the other hand,

as evidenced in Figure 6, the performance of both the PRS and

baseline classifiers seem to have big variances as the threshold

values are varied. We suspect this is due to the scarcity of the

original data to begin with, at 1024000 data points this data

set is the smallest of the three data sets under consideration.

Additionally, with 0.83% of the original data (see Table II),

the classifiers are working with just 8700 points. After some

point, there just isn’t enough data to work with, hence the poor

performance of the classifiers.

3) High Speed Gear: See Figures 7 and 8 and Table III

for results of the High Speed Gear data set. Overall, the PRS

method outperforms the baseline data set, although the PRS

test accuracy hovers slightly above the baseline accuracy for

most parts of the experiment.

V. DISCUSSION AND FUTURE WORK

As seen in the Section IV-B, the performance of PRS can

be uneven at times, especially when the length d of the

signal fragment is relatively small. In most cases, however,

the performance of the PRS is at least as good as the baseline

tests. In general, we find that when d is bigger, the classifier

performance becomes more stable. However, note that due to

the way the data was prepared, a bigger value of d correlates

with dropping more data (see Tables I, II, and III), so in

essence, the classifiers are dealing with less data, but more

closely related data points. We conjecture this is why the PRS

Fig. 5. Classification accuracy of Bearing Fault Data by varying the length
of signal fragments d

Fig. 6. Classification accuracy of Bearing Fault Data by varying threshold
values

is able to extract more intrinsic properties from the degraded

signals. It may be interesting to study the theoretical limit at

which the performance of PRS starts to degrade. As seen in

the experiments conducted on the Bearing Fault Data, since

the size of the data set is relatively small to begin with, the

PRS classifier performance tends to be uneven.

It is also common practice to standardize data sets before

machine learning algorithms are applied. However, in the case

of degraded signals, such as the ones we consider in this

paper, we believe that standardizing the raw signal values

(after the thresholding and down-sampling procedures) can

actually be detrimental to the classifier performance. Some

preliminary work (not shown in this paper) was done and

showed that indeed the PRS does not work well when the

data is standardized. Perhaps it is because the standardization
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Length of Down-Sampled Signals, d Pct. of Original Data
20 4.87%
30 3.34%
40 2.49%
50 1.76%
60 1.77%
70 1.31%
80 0.99%
90 1.08%

100 0.85%

TABLE II
PERCENTAGE OF RETAINED BEARING FAULT DATA, AS A RESULT OF

THRESHOLDING AND DOWN-SAMPLING

Fig. 7. Classification accuracy of High Speed Gear Data by varying length
of signal fragments d

procedure introduces additional information loss on an already

severely degraded signal. Thus, every bit of the degraded

signal must be leveraged to its fullest in order to extract

maximal information out of the signal. Hence we chose the

Random Forest classifier as it is invariant to the scale of the

data values.

The PRS method relies on bootstrapping the degraded

signals in order to extricate information about the original

signal. However, bootstrapping assumes the data values are

inherently discrete; clearly vibration signals are continuous.

In recent years, there has been advances in the deep learning

community that leverages ideas from variational inference

[13,14] to learn continuous distributions with much success.

Briefly, the variational inference technique, together with the

reparameterization trick [15], turns the computation of an

intractable prior in an Bayesian framework into an optimiza-

tion problem, therefore making the finding of the distribution

of priors tractable and possible. We believe that variational

inference can be readily applied to the PRS, whether to

determine individual D·,t, or to determine the distribution of

the signal as a whole so that dependencies can be explicitly

modeled, by sampling from these continuous distributions it

will further enhance predictive power of the PRS. Moreover,

Fig. 8. Classification accuracy of High Speed Gear Data by varying threshold
values

Length of Down-Sampled Signals, d Pct. of Original Data
20 4.39%
30 2.49%
40 1.68%
50 1.07%
60 0.66%
70 0.43%

TABLE III
PERCENTAGE OF RETAINED HIGH SPEED GEAR DATA, AS A RESULT OF

THRESHOLDING AND DOWN-SAMPLING

inherent in the sampling procedure stated in Section III-C

is the simplifying assumption that every distribution D·,t is

independent of each other. With variational inference, we may

be able to model much more complex and intricate interactions

among all the distributions.

VI. CONCLUSION

We presented the probabilistically reconstructed signal, a

technique which reconstructs a highly fragmented and down-

sampled signal so that intrinsic properties of the original signal

can be still be extracted. We took three publicly available

vibration data sets, and curated the data by thresholding

and down-sampling to match the conditions of the data col-

lected in austere operating environments. We then showed the

classification of faults using the PRS on severely degraded

signals is still possible, and sometimes beats the baseline

classifiers by big margins. While there are many possible

improvements to be made to the PRS, such as sampling from

continuous distributions instead of bootstrapping on discrete

values to reconstruct the original signal, we believe what was

demonstrated in this paper shows PRS is a viable approach to

dealing with extremely degraded signals.
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