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Abstract—In the traveling salesman problem (TSP), we consider benchmarks such as calculation speed and computational efficiency.
However, there are few examples that utilize TSP for business purposes. In order to use TSP for this purpose, we need to shorten the
computation time, achieve visualization for users, and acquire effective parameter values such as transit time and distance between
nodes. We can achieve these using cloud computing. In this study, a better route for the TSP can be obtained to add parameters that is
the vertical interval between nodes. We propose the route of TSP that reduces the vertical interval between nodes and equalizes the
difference of elevation. This research can be used for evacuation route calculation to avoid nodes with low elevation.

Index Terms—TSP, m-TSP, Optimization, Genetic algorithm, Cloud Computing
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1 INTRODUCTION

THE traveling salesman problem (TSP) originated in the
20th century and until recently was the most basic type

of combinational optimization problem. When we solve the
TSP, a shortest path is computed using the distance and
time required to travel between nodes. When we use TSP
for business purposes, the parameter between these nodes
is important. Unless the values of these parameters are
suitable, a good result for the TSP is not obtained. Therefore,
it is very important what kind of parameter we adopt and
researches are also advanced [1], [2].

We consider not only the distance and time but also ele-
vation to obtain the parameter between nodes; we observed
that the TSP uses three-dimensional information. An actual
salesman’s movement involves vertical interval. In order
to reduce a salesman’s work, it is necessary to reduce the
vertical interval as much as possible, which also leads to the
reduction in a transportation cost by reducing the vertical
interval.

In this paper, we compare the result of the TSP for the
case of two-dimensional and three-dimensional informa-
tion. From some numerical examples, we conclude that the
result of three-dimensional information is more realistic for
TSP [3].

The TSP is given an n by n symmetric matrix of dis-
tances between n nodes. Obviously, distance is not the only
variable that we can use and other notions such as time can
be considered. We use both distance and time for the TSP
cost metrics in this paper. We find a minimum length tour
in which each node is visited exactly once using this matrix.
As combinatorial optimization problems like the TSP are
very difficult to solve using algorithms because of their vast
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solution space, various methods for using this model have
been proposed [4], [5].

1.1 Multiple Traveling Salesman Problem

In general, the m-TSP can be defined as follows: Given a set
of nodes, let there be m salesmen located at a single depot
node. The remaining nodes, such as cities to be visited,
are called intermediate nodes. Then, the m-TSP consists of
finding tours for all m salesmen, who start and end at the
depot; making sure that each intermediate node is visited
exactly once; and also ensuring that the total cost of visiting
all nodes is minimized. The cost metric can be defined in
terms of distance and time [6], [7] .

Solution procedures proposed for the m-TSP are as fol-
lows. In the exact solution approach [8], Lagrangian relax-
ation + branch and bound [9] is the first attempt to solve
large-scale symmetric m-TSP. In this paper, it is used to solve
non-Euclidean problems of sizes up to 500 nodes and m =
2, 4, 6, 8, 10, and Euclidean problems up to 100 cities and
10 salesmen with this algorithm. Euclidean problems are
known to be harder than non-Euclidean ones. For heuristic
solution procedures [10], a parallel processing approach to
solve the m-TSP using evolutionary programming has been
proposed by Fogel [11]. Problems with 25 and 50 cities
have been solved and it is noted that the evolutionary ap-
proach obtained exceedingly good near-optimal solutions.
Although these results are satisfactory, the following prob-
lems exist: High computation time, no reference about the
acquisition of cost parameters, and high expense of servers
required for computation. We try to address these problems
in this study.

Google maps was used for the TSP and m-TSP. Because
the cost is calculated using Google Maps, it is automatically
displayed as can be seen in Table 1.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'17  | 265

ISBN: 1-60132-466-9, CSREA Press ©



TABLE 1
Examples of Automatic Cost Operations

Terminal node Distance[Km] Time [minutes] difference of
elevation [m]

Coventry Wolverhampton 54.245 69.48 65.57
Wolverhampton Nottingham 85.613 83.63 -106.10
Nottingham Leeds 130.401 136.22 70.19
Leeds Leicester 179.576 155.15 -48.24

1.2 Defining the Problem
Before describing our m-TSP, we must define a few critical
aspects. The m-TSP is defined on a graph G = (V ,A), where
V denotes a set of n nodes, (i.e. vertices) and A denotes a set
of arcs (i.e. edges). Let C = (cij) denote a cost, (i.e. distance,
transit time) matrix associated with A. Let H = (hij) be a
vertical interval matrix associated with A. Matrices C and H
are said to be symmetric when cij = cji, hij = hji,∀(i, j )∈A
and asymmetric otherwise. W is the coefficient of a vertical
elevation. We first define the following binary variable.

Xij =

{
1 if arc(i, j) is used on the tour,
0 otherwise.

(1)

Then, the general scheme of the assignment-noded di-
rected integer linear programming formulation of the m-TSP
is as follows.

Minimize
n∑

i=1

n∑
j=1

(cijxij +W · hijxij) (2)

s.t.
n∑

j=2

x1j = m (3)

n∑
j=2

xj1 = m (4)

n∑
i=1

xij = 1 j = 2, · · · , n, (5)

n∑
j=1

xij = 1 i = 2, · · · , n, (6)

∑
i∈S

∑
j∈S

xij ≤ |S| − 1, ∀ ⊆ V \ {1} (7)

Constraints in Eq. (7) impose connectivity requirements
for the solution, i.e. prevent the formation of subtours of
cardinality S, not including the depot. For details, please
refer to Ref. [16].

We have some problems with the m-TSP. Specifically,
both the TSP and the allotment of nodes are NP-complete;
therefore, completion of calculation requires a large amount
of time. We decide the allotment of the nodes by using the
following methods [12].

1.2.1 [Step1]
For all nodes, we obtain a route using a suitable optimiza-
tion technique. For this study, we use a genetic algorithm.
The route length is referred to as T. The distance between
a departure node and the node that is furthest from it is
referred to as CMax.

1.2.2 [Step2]

For 1 ≤ j < m, the subtour of salesman j cannot exceed the
maximum subtour length

(j/m)(T − 2Cmax) + Cmax (8)

from the departure node. Using the route calculated in
Step 1, salesman j goes to the node next to the end node
of salesman j-1. Next, he circulates the route up to the limit
that does not exceed Eq. (8).

We have adopted this method for the following reason.
When solving the m-TSP, the computational complexity will
increase enormously as the number of salesmen increase.
This method distributes a route to each salesman after
computing the optimal route of all nodes first. Therefore,
the computation time depends on the number of nodes and
not on the number of salesmen. This method has a partially
inefficient field when the salesman returns to the depot
node. We may end up with a longer route for a specific
salesman. However, this method can also be improved
easily if similar methods [13], [14] are used. Moreover, this
method is extensible to the problem of multiple depot nodes
[15] .

1.3 System configuration.

Next, we describe the TSP system configuration. The system
does not depend on any specific optimized algorithm.

Fig. 1. Flow of the m-TSP system

1. Input nodes information
We obtain node information such as latitude, longitude, and elevation using
Google Map API.

2. Acquisition of parameters
We use the GDirections function of Google Maps API Ver3 to obtain the
distance and transit time between nodes easily, in approximately 1 second
for one combination of nodes.

3. Specification of an optimization option
We set the optimization options, which include: only distance, only transit
time, distance and elevation, and transit time and elevation. We set the
number of salesman and the coefficient W.

4. Computation of m-TSP
Here, we use cloud computing technology. Therefore, the server’s capacity
can be increased easily. We scale up the server capacity, for example, by
increasing the number of cores of the CPU. Then, we can set the number of
threads for programming and the computation time becomes shorter.

5. Visualization of a result
We visualize the result of the m-TSP using Google Maps. We propose the
optimization route and route navigation easily.
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1.4 Numerical examples

In this study, we use a genetic algorithm (GA) for the op-
timized algorithm. The setting of the GA is shown in Table
2. We have adopted master-slave parallelization for parallel
computation. Many parallel computing techniques for GA
have been proposed [15]. For Google Maps programming,
the PHP language is usually used. We choose this parallel
method as can be easily programmed by using PHP.

TABLE 2
Setting of GA

Gene Value
Number of genes 100

Number of generations 50000
Intersection partially matched crossover

Selection pressure 0.7
Sudden generation insertion mutation
Sudden incidence 0.03

Parallelization method master-slave parallelization

We first calculate the TSP using only two-dimensional
information, e.g., distance or transit time. We set the value
of W to 0. Tables 3-5 show an optimal route with three
salesmen and the vertical interval between the nodes. We
obtain the total distance and difference of elevation for each
salesman from Tables 3-5. Fig. 2 shows an optimal route for
each salesman.

TABLE 3
Route for salesman1(Distance priority)

Order From To Distance
[Km]

difference of
elevation [m]

1 London (the Palace of
Westminster)

Southampton (Tudor
House & Garden)

131.319 -7

2 Southampton (Tudor
House & Garden)

Nottingham
(nottingham old
market square)

273.113 41

3 Nottingham
(nottingham old
market square)

Leeds (University of
Leeds)

123.489 70

4 Leeds (University of
Leeds)

Belfast (Titanic
Belfast)

467.501 -114

5 Belfast (Titanic
Belfast)

Glasgow (University
of Glasgow)

203.742 21

6 Glasgow (University
of Glasgow)

Edinburgh
(Edinburgh Castle)

84.112 62

7 Edinburgh
(Edinburgh Castle)

London (the Palace of
Westminster)

651.246 74

The total value of distance 1934.522 —-
The absolute total value of difference of elevation 390

TABLE 4
Route for salesman2(Distance priority)

Order From To Distance
[Km]

difference of
elevation [m]

1 London (the Palace of
Westminster)

Liverpool (Tate Liver-
pool)

341.407 -5

2 Liverpool (Tate Liver-
pool)

Manchester (Artzu
Gallery - Art Gallery
Manchester)

54.832 28

3 Manchester (Artzu
Gallery - Art Gallery
Manchester)

Bradford (bradford
cathedral)

63.614 74

4 Bradford (bradford
cathedral)

London (the Palace of
Westminster)

323.836 97

The total value of distance 783.689 —-
The absolute total value of difference of elevation 205

TABLE 5
Route for salesman3(Distance priority)

Order From To Distance
[Km]

difference of
elevation [m]

1 London (the Palace of
Westminster)

Plymouth (smeaton
tower)

384.268 -5

2 Plymouth (smeaton
tower)

Cardiff (Cardiff Cas-
tle)

244.629 5

3 Cardiff (Cardiff Cas-
tle)

Wolverhampton
(Saint John’s Church)

200.825 140

4 Wolverhampton
(Saint John’s Church)

Leicester (St. Martin’s
Cathedral)

88.939 -84

5 Leicester (St. Martin’s
Cathedral)

Birmingham
(Birmingham
Museum & Art
Gallery)

70.176 77

6 Birmingham
(Birmingham
Museum & Art
Gallery)

Coventry (Coventry
Cathedral)

36.961 -59

7 Coventry (Coventry
Cathedral)

Stoke-on-Trent
(Staffordshire
University)

107.318 32

8 Stoke-on-Trent
(Staffordshire
University)

Sheffield (The Uni-
versity of Sheffield)

80.528 -23

9 Sheffield (The Uni-
versity of Sheffield)

Kingston upon
Hull(Streetlife
Museum of
Transport)

107.921 -91

10 Kingston upon Hull
(Streetlife Museum of
Transport)

Bristol(Bristol
Museum and Art
Gallery)

365.152 50

11 Bristol(Bristol
Museum and Art
Gallery)

London(the Palace of
Westminster)

192.578 43

The total value of distance 1879.295 —-
The absolute total value of difference of elevation 609

Fig. 2. A optimal route for each salesman with two-dimensional informa-
tion
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We solve the TSP using three-dimensional information
again. We set the value of W to 5. Similarly, Tables 6-8
show an optimal route with three salesmen and the vertical
interval between nodes. Fig. 3 shows an optimal route for
each salesman.

TABLE 6
Route for salesman1(Distance and Elevation priority)

Order From To Distance
[Km]

difference of
elevation [m]

1 London (the Palace of
Westminster)

Plymouth (smeaton
tower)

384.276 -4

2 Plymouth (smeaton
tower)

Bradford (bradford
cathedral)

521.413 102

3 Bradford (bradford
cathedral)

Leeds (University of
Leeds)

14.763 7

4 Leeds (University of
Leeds)

Stoke-on-Trent
(Staffordshire
University)

152.223 3

5 Stoke-on-Trent
(Staffordshire
University)

Wolverhampton(Saint
John’s Church)

53.329 33

6 Wolverhampton
(Saint John’s Church)

Birmingham
(Birmingham
Museum & Art
Gallery)

27.805 -7

7 Birmingham
(Birmingham
Museum & Art
Gallery)

Coventry (Coventry
Cathedral)

36.961 -59

8 Coventry (Coventry
Cathedral)

Leicester (St. Martin’s
Cathedral)

39.954 -19

9 Leicester (St. Martin’s
Cathedral)

Bristol (Bristol
Museum and Art
Gallery)

207.822 -13

10 Bristol (Bristol
Museum and Art
Gallery)

Southampton (Tudor
House & Garden)

169.835 -50

11 Southampton (Tudor
House & Garden)

London (the Palace of
Westminster)

131.327 -6

The total value of distance 1739.708 —-
The absolute total value of difference of elevation 303

TABLE 7
Route for salesman2(Distance and Elevation priority)

Order From To Distance
[Km]

difference of
elevation [m]

1 London (the Palace of
Westminster)

Manchester (Artzu
Gallery - Art Gallery
Manchester)

334.839 23

2 Manchester (Artzu
Gallery - Art Gallery
Manchester)

Kingston upon Hull
(Streetlife Museum of
Transport)

156.831 -29

3 Kingston upon Hull
(Streetlife Museum of
Transport)

Sheffield (The Uni-
versity of Sheffield)

107.921 91

4 Sheffield (The Uni-
versity of Sheffield)

Nottingham
(nottingham old
market square)

73.312 -50

5 Nottingham
(nottingham old
market square)

London (the Palace of
Westminster)

205.356 35

The total value of distance 878.259 —-
The absolute total value of difference of elevation 228

TABLE 8
Route for salesman3(Distance and Elevation priority)

Order From To Distance
[Km]

difference of
elevation [m]

1 London (the Palace of
Westminster)

Edinburgh
(Edinburgh Castle)

651.253 75

2 Edinburgh
(Edinburgh Castle)

Glasgow (University
of Glasgow)

84.112 -62

3 Glasgow (University
of Glasgow)

Belfast(Titanic
Belfast)

203.742 -21

4 Belfast (Titanic
Belfast)

Liverpool (Tate Liver-
pool)

442.179 4

5 Liverpool (Tate Liver-
pool)

Cardiff (Cardiff Cas-
tle)

334.391 6

6 Cardiff (Cardiff Cas-
tle)

London (the Palace of
Westminster)

244.394 1

The total value of distance 1960.071 —-
The absolute total value of difference of elevation 169

Fig. 3. An optimal route for each salesman with three-dimensional
information

We obtain the result of the comparison of two-
dimensional and three-dimensional information in Table 9.
This table shows that the salesman’s work is reduced when
three-dimensional information is used, such as vertical in-
terval for optimization. Therefore, we should use three-
dimensional information for the TSP to obtain more realistic
solution for the TSP.

TABLE 9
Route for salesman3(Distance and Elevation priority)

Distance Distance and Elevation
The total
value of
distance
[Km]

The absolute to-
tal value of dif-
ference of eleva-
tion [m]

The total
value of
distance
[Km]

The absolute total
value of difference
of elevation [m]

Salesman1 1934.522 390 1739.708 303
Salesman2 783.689 205 878.259 228
Salesman3 1879.295 609 1960.071 169
Total 4597.506 1204 4578.038 700
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2 CONCLUSION

When considering the TSP, we enabled automatic calcu-
lation and proposed a simple method for deciding the
criterion of the cost of three-dimensional information. Our
calculations can be easily visualized through Google Maps
and can be performed at a realistically usable speed using
cloud computing. One of the purposes of this research was
to construct a TSP system for business purposes. In previ-
ous research, we used only two-dimensional information.
Therefore, we adopted no elevation. It is very important
to reduce the vertical interval between nodes. Because we
need to reduce carbon dioxide gas emissions and gasoline
consumption for environment and cost, we think that this
system is effective. Because we adopt the elevation of a
node, we think that this system is also useful in disaster
scenarios. During tsunamis, refuge is required in elevated
places. We can obtain the optimal route using only the nodes
that have high elevation using this system. Therefore, this
system can have many applications.
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