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Abstract - Identifying and assessing risks is vital in striving 
for adequate information security. The basis for the 
assessments is the probability and the severity of possible 
incidents affecting the confidentiality, integrity, and 
availability of information assets. However, assessing the 
probability and the severity of possible events is not 
straightforward. The objective of this paper is to explore 
the consensus of raters assessing the probability and the 
severity of information security incidents. Data collected 
through questionnaires are used to evaluate the consensus 
of 20 raters when assessing 105 information security 
incidents. The results indicate that the consensus of the 
raters is too low for the assessment results to provide a
sound basis for decisions. In conclusion, better support is 
needed for assessing information security risks in order to 
reach the necessary consensus levels. 

Keywords: Information security, Risk assessment, Inter-
rater reliability, Consensus 

1 Introduction 
Organizations’ management of information security 

should be based on the information security risks they are 
facing [1]. However, to assess the information security risks 
is challenging, due to the dynamic nature of the information 
assets and systems as well as the organizations’ security 
efforts. In these kinds of situations, where there are no 
straightforward answers readily available, the opinions, or 
perceptions, of experts are needed. Unfortunately, even high 
consensus among the experts does not guarantee that their 
answers are correct; they may be uniformly wrong in their 
assessments. Thus, the consensus of experts is required, but 
not a guarantee, for valid results [2]–[5] and has been 
studied in several different areas, such as, medical pathology 
[2], [4], accounting [4], [5], psychology [4], [6], [7], and 
cyber security [3]. 

Despite the substantial number of methods and 
frameworks proposed for assessing information security 
risks based on perceived probabilities and severities, there 
are no methods available alleviating the issue of insufficient 
reliability (and consequently also lacking validity) in the 
assessments [8]. The challenges faced when striving for 
reliable assessments are highlighted by the vast range of 
input proposed for assessment methods and frameworks [9]. 

The objective of this paper is to explore the consensus 
(inter-rater reliability) of raters’ individual assessments of 
the probability and the severity of information security 
incidents. This is motivated by the difficulty to directly 
assess the validity of the results and the requirement of 
reliability for validity [2]–[5]. The addressed research 
question is: Are raters’ assessments of the probability and 
the severity of information security incidents reliable 
enough to be used as a basis for information security
management? In order to answer the research question, the 
following two hypotheses are tested.

H1.  According to proposed measures of consensus, ratings 
of the probability of information security incidents are 
reliable enough to serve as the basis for decisions.  

H2. According to proposed measures of consensus, ratings 
of the severity of information security incidents are 
reliable enough to serve as the basis for decisions.  

If the results do not show perfect consensus, there may 
be several factors causing the lack of agreement. Two 
variables that may affect the results are whether the raters
are experts in the areas of information security and risk 
assessment and the cognitive style of the raters. Thus, the 
following two hypotheses are tested. 

H3.  Information security and risk assessment experts reach 
higher consensus than non-experts. 

H4. Raters with a logical cognitive style reach higher 
consensus than raters with an intuitive cognitive style. 

There may also be other factors that make some raters
especially bad at assessing the probability and the severity 
of information security incidents. Alternatively, the 
specification of some of the incidents might render them 
difficult to assess and, thereby, substantially lower the 
overall consensus of the raters (when a set of incidents is 
considered). Thus, the following two hypotheses are tested. 

H5.  Removing a fraction of the raters yields a subset of 
raters whose consensus is substantially higher. 

H6.  Removing a fraction of the incidents yields a subset of 
incidents for which the consensus of the raters is 
substantially higher. 

The rest of the paper is structured as follows. Section 2 
and 3 describe the method and results respectively. Section 4 
discusses the results and section 5 concludes the paper. 
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2 Method 
In this study, consensus measures are applied to data on 

the assessment of the probability and the severity of 
information security incidents. The assessment data were 
collected in two previous studies [10], [11]. The subsections 
below describe the participants included and the 
questionnaire used in those studies as well as the 
computation of the consensus measures. 

2.1 Participants and questionnaire 
The questionnaire was distributed to a strategic sample 

of 20 researchers in the areas of IT security, IT management, 
and human factors at the Swedish Defence Research Agency 
(the authors’ own organization). All the respondents possess 
university degrees, are in the age range 29 to 64 years, work 
as researchers, and are familiar with the concepts of 
probability and severity assessments. In this study, the 
expertise, considering information security and risk 
assessment, is used as a variable to analyze whether it 
affects the results. Thus, the participants being merely 
familiar with the concepts of probability and severity 
assessments can be distinguished from the experts, or at 
least the self-proclaimed experts. In addition to expertise, 
the questionnaire includes items used to measure the 
cognitive style. Based on their answers, the participants are 
graded on a scale where the two ends represent logical and 
intuitive cognitive style respectively.

The questionnaire includes 105 incidents. For each 
incident, the probability and the severity were marked on 
visual analog scales ranging from 0 to 100% and 0 to 10 
respectively. Considering probability, the value represents 
the probability of the incident occurring within the following 
ten years. Considering severity, the value 0 represents 
minimal or no harm at all, whereas 10 represents the greatest 
harm caused by any of the incidents. It was also specified 
that the scale is proportional, i.e., 5 is half as harmful as 10. 
For efficiency and precision, the answers were measured in 
millimeters from the anchor marking the value 0, instead of 
the values used on the scales. This resulted in values ranging 
from 0 to 108, where 108 corresponds to the probability 
value 100% and the severity value 10, respectively.   

The incidents were designed to be meaningful for the 
target population. For example, they used information assets 
and incidents that are relevant for the organization. An 
example of the incidents is: A scientist’s USB-stick with five 
years of collected (unclassified) material is stolen at an 
international conference. 

The outcome of the performed assessments is illustrated 
in Fig. 1, where the results of the 20 respondents’ 
assessment of the 105 incidents (in total yielding 2,100 
incident assessments, each consisting of one probability and 
one severity value) are plotted after being mapped into 
scales from 1 to 10. The graph illustrates that the 
distribution of the assessments is far from uniform, although 
there are values spread over the whole sample space.

Fig. 1. The distribution of the pairs of probability and severity values. 

2.2 Computation of consensus measures 
There are several methods for measuring the consensus 

of raters, also referred to as inter-rater reliability indices 
[12]. A prominent method is Krippendorff’s alpha (KA) that 
handles data measured on any of several different kinds of 
scales (e.g., ordinal, interval, or ratio [13]), an arbitrary 
number of raters (larger than 1), and missing data [14]. KA 
values are computed according to the equation:

(Dd/Da) (1)

where Dd is the average disagreement between raters
regarding the units rated. A difference function, which has 
to be adapted to the type of scale used during the rating [14], 
is used to compute the average difference between all the 
values assigned to each unit (incident). Dd is computed as 
the average of the averages computed for each unit. Da is the 
average difference between all the values assigned by the 
raters and computed using the same difference function as 
for computing the disagreement.

The values returned by the difference function are 0 or 
larger. Thus, the maximal KA value equals 1 and represents 
perfect agreement between the raters. The KA value 
decreases with increasing disagreement between the raters
and the KA value 0 represents random rating. In extreme 
cases, with systematic disagreements, negative KA values 
may appear. Considering not only the disagreement but also 
the average difference provides two major advantages; the 
index is adjusted in situations where low disagreement 
depends on skewed use of the rating values, and the effect of 
lower disagreement resulting from using scales with fewer 
steps is removed. Since KA requires absolute agreement, 
i.e., does not compensate for systematic bias, it is 
occasionally being referred to as a conservative index [15].

In this study, the difference function for interval scales 
was used, i.e., the difference between values was squared 
during the computation of the average disagreements and 
the average differences. To automate the many 
computations of KA values, a script was implemented in 
Microsoft Excel (2013). The script was validated by the use 
of test cases and comparison to the output from the online 
tool ReCal OIR [16] and the SPSS macro KALPHA [17].

The results provided by KA are complemented with the 
Pearson product-moment correlation coefficient [13],
hereafter referred to as the Pearson coefficient (PC). The PC
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is used to acquire measures of consensus based on the 
covariation between raters and, consequently, does not 
penalize for systematic bias. Assuming that calibration of 
raters can remove systematic bias, the relative weighing of 
the incidents becomes a central aspect when targeting 
consensus. Still, the use of covariation measures when 
assessing rater consensus is not considered appropriate by 
all researchers [15]. Despite the criticism, the PC is used 
because of the possibility of calibration and to be able to 
compare the results to studies performed in other areas.  

The consensus measures based on the PC were 
computed in two steps. First, the PCs for all pairs of raters 
were computed. Second, the consensus measure was 
computed as the average of all the computed PCs. In order 
to support the large number of combinations arising from 
dividing the set of raters into different subsets, a script was 
implemented in Microsoft Excel (2013). 

3 Results 
The results include the data on consensus used to test the 

formulated hypotheses (H1 to H6).

3.1 Overall inter-rater reliability 
The KA and PC values were computed from the 2,100 

assessments of the probability and the severity of 
information security incidents. Table 1 includes the results.  

Table 1. KA and PC values  

Consensus coefficient Probability Severity
KA 0.30 0.42
PC 0.42 0.54

For consensus coefficients to be useful, reference values 
are needed to compare the results with. These reference 
values may be based on experience or the results of others. 
For the KA, Krippendorff [18] introduced the interpretation 
that results in the interval 0.8 to 1 indicate reliable data and 
results in the interval 0.667 to 0.8 indicate that the data 
should be used with care, whereas all data resulting in KA 
values below 0.667 should be discarded. For the PC, the 
results presented in some previous studies on the correlation 
between experts in different fields of expertise are used as 
reference, Table 2. 

Table 2. Previously reported consensus coefficients 

Expert Result Study
Weather forecaster 0.95 [4]
Auditor 0.76 [4]
Violence risk assessment 0.76 [6]
Cyber security, intrusion detection systems 0.64 [3]
Cyber security, arbitrary code execution attacks 0.56 [3]
Pathologist 0.55 [4]
Cyber security, software vulnerability discovery 0.54 [3]
Cyber security, denial of service attacks 0.48 [3]
Clinical psychologist 0.40 [4]
Stockbroker 0.32 [4]

Consequently, based on the KA values, the data should 
not be used for any decisions, that is, the hypotheses H1 and 
H2 are refuted. Based on the PCs, the consensus of the raters 
is at the same levels as for experts in clinical psychology 
and software vulnerability discovery considering probability 
and severity respectively. Thus, there is no clear answer to 
whether the hypotheses H1 and H2 are supported or not.  

3.2 Expertise and cognitive style 
Two variables that may affect the consensus coefficients 

are the level of expertise and the cognitive style. Table 3
includes the KA values for the different subsets of raters
classified as: information security and risk assessment 
experts and non-experts respectively, as well as logic and 
intuitive cognitive style respectively.

Table 3. The KA and PC values for different subsets of raters based on 
expertise and cognitive style  

Rater subset Raters in set Probability Severity
Experts 10 0.25 0.44

Non-experts 10 0.37 0.41
Logical 9 0.27 0.27
Intuitive 11 0.29 0.55

No PCs were calculated for the subsets of raters called 
experts, non-experts, logical, and intuitive. Instead 
regression analysis was performed to identify significant 
regression models considering the answers to the questions 
on reasoning and expertise, on one hand, and the average PC
between each rater and all the other raters. However, no 
significant relations were found.  

Based on the KA values in Table 3, the consensus of 
experts is clearly lower considering probability and slightly 
higher considering severity than the consensus of non-
experts. Thus, the hypothesis H3 is not supported. The 
consensus of raters with logic cognitive style is slightly 
lower considering probability and drastically lower 
considering severity than the consensus of raters with 
intuitive cognitive style. Thus, the hypothesis H4 is not 
supported. Since no significant relations were found, neither 
the regression models support the hypotheses H3 and H4.  

3.3 Removing incidents and raters to 
improve consensus 

This section includes results supporting the analysis of 
whether removing incidents and raters yields substantial 
improvements in the consensus. The results include 
illustrations of the variation of the computed disagreement 
and PC values, a method for the adjustment of the KA 
values yielded by removing incidents and raters, and the KA 
and PC values based on the removal of incidents and raters.  

3.3.1 Disagreement values and Pearson coefficients 
The disagreement values, Dd in equation (1), computed 

for each of the incidents vary widely. Fig. 2 illustrates the 
values provided by the 20 raters for the incidents with the 
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highest (incident 100) and lowest (incident 40) disagreement 
values for probability. Further illustration of the distribution 
of the disagreement values for the incidents is provided in
Fig. 3, where ten bins are used to illustrate the distribution 
for severity. The number of incidents in a bin corresponds to 
the number of incidents whose disagreement value is larger 
than the bin maximum value of the previous bin and smaller 
than or equal to the bin maximum value of the current bin, 
e.g., all incidents placed in the second bin have a
disagreement value over 290 and below or equal to 580. 

Fig. 2. The incidents with the lowest and the highest disagreements for 
probability. Because of the measurement method, the largest value is 104. 

Fig. 3. The distribution of disagreement values for severity. 

The variation in disagreement values between the 
incidents supports the general assumption leading to 
hypothesis H5. That is, removing selected incidents will 
increase the consensus for the remaining incidents. 

Fig. 4, illustrates the distribution of each raters’ average 
PC with the other raters. The variation in the average PC
supports the general assumption leading to hypothesis H6. 
That is, removing selected raters will increase the consensus 
for the remaining raters. 

Fig. 4. The distribution of raters’ average PC. 

3.3.2 Adjusting the KA values 
A viable question in relation to the improvement of KA 

values by removing incidents and raters is to what extent the 
improved values are due to the incidents and raters being 

removed with hindsight. To address the issues the increase 
of the KA values is assumed to stem from two factors: (1) 
the higher consensus between the remaining raters for the 
remaining incidents and (2) the possibility to retain the 
values that in retrospect provide the best KA values. In this 
study, the second factor is referred to as the hindsight effect. 

To model the improvement of the KA values, a factor is 
introduced in equation (1). Thus, the following equation is 
proposed to specify the improved KA. 

KA’ = 1 – (1 – I) * C (2)

where KA’ is the improved KA, I is the improvement, and 
C, which is introduced to simplify the equations, is the 
fraction between the average disagreements (Dd) and the 
average differences (Da). If the improvement equals zero 
then KA’ will equal the original KA. If the improvement 
equals 1 then also KA’ will equal 1, i.e. the maximal KA 
value. Thus, assuming that the improvement is not negative, 
the improvement values (I) are in the interval 0 to 1.
Assuming that the two causes for the improvement overlap, 
the following equation is used to model their relationship. 

I = Ic + Ih – Ic * Ih (3)

where I is the improvement of the KA values yielded by 
removing incidents and raters, Ic is the improvement caused 
by the actual improvement of the consensus among the 
remaining raters for the remaining incidents, and Ih is the 
improvement caused by hindsight effects. Reformulating 
equation (3) yields:  

Ic = (I – Ih) / (1 – Ih) (4)

Using equation (2), the adjusted KA quantifying the actual 
improvement in the consensus between raters is described 
by the following equation. 

KAc’ = 1 – (1 – Ic) * C (5)

It may be noted that for the original KA, when no incidents 
or raters have been removed, there is no hindsight effect so 
KAh should be zero and KAc is equal to KA. Combining 
equation (4) and (5) results in the equation:  

KAc’ = 1 – C * (1 – I) / (1 – Ih) (6)

Reformulating equation (2) to C * (1 – I) = 1 – KA’ yields 
the equation: 

KAc’ = 1 – ( 1 – KA’ ) / ( 1 – Ih ) (7)

Using equation (2) for the improvement related to the 
hindsight effect results in ( 1 – Ih ) = ( 1 – KAh’ ) / Ch, where 
KAh’ is the improved KA value achieved by removing 
values from a set of random assessment values, and Ch
corresponds to the C value for random assessment values 
(and should be equal to 1 for truly random values). Using 
this and Ch = 1 – KAh yields the equation:   

KAc’ = 1 – ( 1 – KAh ) * ( 1 – KA’ ) / ( 1 – KAh’ ) (8)
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Thus, KAc can be computed from the KA values 
computed for the collected data, yielding KA’, and random 
data, yielding KAh and KAh’.

3.3.3 KA when incidents and raters are removed 
Table 4 contains the KA values for the probability and 

the severity assessments respectively. Each value 
corresponds to the KA for a combination of a set of raters
and a set of incidents. The first row of results in the table is 
based on all the incidents. The following rows include the 
results for five subsets resulting from removing, one by one, 
the incidents causing the largest reduction in the KA values 
until the specified fraction of incidents remains. 
Correspondingly, the first column of the results in Table 4
contains the results considering all the raters. The following 
columns include the results for three subsets resulting from 
removing, one by one, the raters causing the largest 
reduction in the KA values until the specified fraction of 
raters remains. For the sets where both incidents and raters
have been removed, the incidents were removed first. 

To be able to compute adjusted KA values according to 
equation (8), the KA values achieved when removing 
incidents and raters from sets of random assessment values 
are needed. Table 5 includes the average KA values yielded 
by removing incidents and raters from 1,000 sets of random 
assessment values. Ideally, the KA value when random 
values are assigned for all incidents and raters (top left in 
Table 5) should be 0, whereas the computed average 
is -0.0003. The 95% confidence interval for the KA value 
is -7.6·10-4 to 9.6·10-5 and thus includes 0. As illustrated by 
the data, the KA will increase when incidents and raters are 
removed, even if the values assigned by the raters are 
random. This increase is due to the hindsight effect 
discussed in the previous subsection.  

Table 4. KA values for probability and severity 

Inci-
dents

Probability KA values Severity KA values
All 

raters
75% 50% 25% All 

raters
75% 50% 25%

All 0.30 0.42 0.52 0.58 0.42 0.54 0.63 0.73
90% 0.33 0.46 0.55 0.59 0.46 0.58 0.68 0.78
75% 0.39 0.52 0.60 0.65 0.52 0.64 0.74 0.83
50% 0.51 0.64 0.72 0.76 0.62 0.73 0.81 0.86
25% 0.71 0.78 0.83 0.89 0.72 0.85 0.90 0.92
10% 0.86 0.92 0.97 0.99 0.81 0.91 0.95 0.97

Table 5. Average KA values for 1,000 sets of random data 

Incidents
Raters

All 75% 50% 25%
All -0.0003 0.0220 0.0519 0.1115

90% 0.0063 0.0302 0.0622 0.1257
75% 0.0181 0.0465 0.0833 0.1533
50% 0.0454 0.0846 0.1323 0.2175
25% 0.0985 0.1637 0.2377 0.3565
10% 0.1642 0.2733 0.3897 0.5524

Table 6 includes the adjusted KA values provided by 
equation (8) when applied to the KA values in Table 4 and 
5. The adjusted values are fairly close to the original values 
in Table 4, for probability the maximal decrease is below 
10% and for severity the maximal decrease is below 5%.
This is explained by the limited size of the KA values for 
random data when few incidents and raters have been 
removed as well as the values in Table 5 being relatively 
low compared to the values in Table 4 also when large 
fractions of incidents and raters are removed.  

Like KA, the PCs were computed for several different 
sets of incidents and raters (Table 7). For each combination 
of the sets of raters and incidents, the PCs were computed 
for each pair of raters. The reliability measure was then 
computed as the average of the values for each pair of raters.

The result in Table 6 shows that removing limited 
fractions of the incidents or raters (maximum 25%) will not, 
according to Krippendorff’s interpretation [18], yield 
acceptable KA. Thus, the hypotheses H5 and H6 are not 
supported. Considering the PCs in Table 7, there is an 
increase to at most 0.53 for probability and 0.64 for severity 
(both results are achieved by removing 25% of the 
incidents). Overall, the PCs provides some support for the 
hypotheses as the results correspond to the consensus of 
experts in software vulnerability discovery and intrusion 
detection systems respectively (Table 2). 

Table 6. Adjusted KA values (KAC) for probability and severity 

Inci-
dents

Probability KA values Severity KA values
All 

raters
75% 50% 25% All 

raters
75% 50% 25%

All 0.30 0.41 0.50 0.53 0.42 0.53 0.61 0.69
90% 0.33 0.44 0.52 0.54 0.46 0.57 0.66 0.74
75% 0.38 0.50 0.56 0.58 0.51 0.62 0.72 0.80
50% 0.49 0.60 0.68 0.69 0.60 0.70 0.78 0.82
25% 0.67 0.73 0.78 0.83 0.69 0.82 0.86 0.88
10% 0.83 0.89 0.94 0.97 0.77 0.87 0.92 0.94

Table 7. The PCs for probability and severity 

Inci-
dents

Probability PCs Severity PCs
All 

raters
75% 50% 25% All 

raters
75% 50% 25%

All 0.42 0.51 0.58 0.65 0.54 0.60 0.67 0.74
90% 0.47 0.55 0.63 0.70 0.59 0.65 0.71 0.79
75% 0.53 0.60 0.68 0.75 0.64 0.71 0.77 0.84
50% 0.65 0.72 0.77 0.83 0.72 0.78 0.83 0.88
25% 0.79 0.85 0.89 0.92 0.81 0.87 0.91 0.94
10% 0.92 0.97 0.98 0.99 0.89 0.95 0.97 0.98

4 Discussion 
In this section, the results presented in the previous 

section are discussed, considering the overall consensus, the 
influence of expertise and cognitive style, the removal of 
incidents and raters, and the limitations of the study. 
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4.1 Overall inter-rater reliability
Based on the KA values achieved and the interpretation 

of KA values introduced by Krippendorff [18], no 
information security management decisions should be based 
on the assessment data. Considering the PCs, the raters are 
performing like experts in clinical psychology, when 
assessing probability, and like experts in software 
vulnerability discovery, when assessing severity (Table 7). 
Thus, according to the KA values, the hypotheses H1 and 
H2 are not supported, whereas the situation is unclear when 
the PCs are considered. Still, the PCs indicate that the 
ratings of probability and severity are not reliable enough 
between raters to be considered a sound basis for the 
quantification of information security risks.  

4.2 Expertise and congnitive style 
The data used in this study include assessments by 

experts as well as non-experts. The KA values computed for 
these two sets respectively (Table 3) indicate small 
differences considering severity but considerable differences
considering probability (about 50%), implying that the non-
experts have a higher consensus than the experts. However, 
considering the regression model for the average PC
between each rater and all the other raters, and the answers 
to the questions on expertise, there is no significant relation 
between the constructs. Consequently, neither the KA values 
nor the PCs show that the experts have a higher consensus 
than the non-experts and the third hypothesis (H3) is not 
supported. The implication is that it cannot be stated that 
experts have a higher consensus than non-experts when the 
probability and the severity of information security incidents 
are rated. 

Considering cognitive style, the raters have been divided 
into two subsets based on their answers to the related 
questions. The raters ending up in the subset with the most 
intuitive raters score a considerably higher KA than the 
raters in the other subset for the severity assessments. Still, 
the regression model for cognitive style and the PC coupled 
to the rating of severity did not yield a significant relation 
between the two constructs. Thus, the fourth hypothesis 
(H4) is not supported. The implication is that there is no 
indication of raters being more inclined to logical reasoning 
reaching higher consensus but rather the opposite 
considering severity, although no significant relation was 
found. 

4.3 Removal of incidents and raters 
The disagreement values for the incidents vary (as 

illustrated by Fig. 2 and Fig. 3). This supports the 
formulation of the hypotheses that some incidents are harder 
to assess than others (H6). Along these lines, the KA values 
yielded by removing incidents and raters one by one in order 
to increase the KA, show that the selected subsets of 
incidents and raters certainly provides higher values. 
However, there are issues related to this procedure. First, it 
could be argued that the increase in KA values is due to the 

removal of incidents and raters in retrospect, which in this 
study is referred to as the hindsight effect, rather than the 
removed incidents being hard to assess and the removed 
raters being poor assessors. To take the possibility of the 
hindsight effect into account, a set of adjusted KA values 
has been computed (Table 6). These values indicate that the 
KA values are increasing for the selected subsets even 
though the hindsight effect has been considered. Second, the 
rate at which the KA can increase when incidents are 
removed is limited. As illustrated in Fig. 3, the distribution 
of the disagreement values for the severity assessments is
similar to the normal distribution. Removing a few incidents 
will have no drastic effect on the KA, since most of the 
values are close to the average and the tails are rather short 
(the largest value is lower than three times the average).
However, if large enough fractions of the raters and 
incidents are removed, the consensus values do increase to 
acceptable levels. For example, if KA values above 0.66 are 
considered acceptable, this can be achieved for the 
probability assessments by removing 75% of the incidents 
or 50% of the incidents and 50% of the raters. Considering 
the severity assessments, acceptable KA values are reached 
by removing 75% of the incidents, or 50% of the incidents 
and 25% of the raters, or 25% of the incidents and 50% of 
the raters, or 75% of the raters. Consequently, it is certainly 
possible to find subsets of incidents and raters resulting in 
acceptable KA values. However, none of the combinations 
identified contains more than 37.5% of the assessed values.  

Considering the PCs, removing the same fractions of 
incidents and raters as for the KA values yields results above 
the level reached by accounting auditors (0.76) [4].
Although, the consensus of the remaining raters considering 
the remaining incidents clearly increases when incidents and 
raters are systematically removed, the fraction of 
assessments that needs to be removed is quite large (for KA 
it is over 60%). Thus, the hypotheses H5 and H6 are not 
supported. The implication is that the low consensus values 
are not caused by a few exceptionally hard incidents or a 
few poor raters but rather the rating being difficult in
general. 

4.4 Limitations 
There are several limitations of the study that may have 

affected the results. The length of the incident descriptions 
was strictly limited. This was necessary to allow 
questionnaires with 105 incidents to be constructed and may 
have led to incidents that were difficult to interpret. 
However, previously performed test-retests suggest that 
most respondents understood the questions well enough to 
provide similar answers when retested [10]. This indicates 
that the scenarios were comprehendible. Moreover, as 
quantitative data supporting the assessment of probabilities 
and severities are rarely available and many security 
assessments are made in day-to-day work by information 
security risk assessment experts as well as non-experts, the 
limited amount of information supporting the assessments 
may correspond to realistic scenarios. 
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There are numerous ways that the present study could be 
extended to incorporate additional aspects. Currently, the 
level of expertise is based on self-assessments, in future 
studies other means to grade the expertise of the respondents 
could be incorporated. Moreover, more advanced
optimization algorithms could be used when selecting 
incidents and raters to be removed, in order to improve the 
consensus. Further, the study is based on ratings performed 
by individuals. Additional studies are needed to analyze the 
consensus when the ratings are performed in group settings.
To enable further analysis of the differences between the 
computed KA values, bootstrapping can be used to decide 
confidence intervals for the KA values [17]. 

5 Conclusions 
The conclusion of the study is that the assessments of the 

probability and the severity of information security incidents 
have to be more stringent than the process used in this study. 
There is also a need for data supporting the assessments. 
The lack of underlying data is also supported by the fact that 
experts and non-intuitive raters do not perform better. 

Despite the rather low consensus values, the results do 
show that there is consensus (inter-rater reliability) among 
the raters, although not at the desired level. With the support 
of more underlying data and software tools, the levels of 
consensus may be increased and turn information security 
risk assessments into a viable basis for information security 
management processes. 
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