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Abstract - In this study, we investigated the difference of EEG, 

ECG and EMG signals collected during cycling exercise 

between regular exercisers and occasional exercisers.  After 

five minutes resting, participants were asked to take cycling 

exercise at three stages in different loading. The EEG signal 

was analyzed by wavelet transform for nine frequency bands, 

delta, theta, low alpha, high alpha, low beta and high beta, low 

gamma, high gamma and whole frequency band form 0.5 Hz to 

50 Hz. The ECG signal was used to calculate the average 

maximum heart rate ratio (AMHRR), DFA-α and Cardiac 

stress index (CSI) for evaluating the cardiac status during 

cycling exercising. The Wilcoxon Rank Sum Test was used to 

compare the differences between regular exercise and 

occasional exercise groups, and the multiple regression 

analysis was adopted to estimate the association between EEG 

power and AMHRR or RMS of EMG. The results of DFA-α, CSI, 

and heart rate presented the regular exercisers suffered less 

cardiac stress than the occasional exercisers during cycling 

exercise. On the other hands, there was no significant 

difference in EEG signal between the two groups. In addition, 

the results of the multiple regression analysis revealed the 

AMHRR was slightly associated with EEG signals. 
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1 Introduction 

Regular physical exercise is associated with clear health 

benefits, and it is an important part of preventive strategies for 

health promotion [1]. In order to examine the neurobiological 

and physiological effects induced by exercise, a wide range of 

techniques has been used, ranging from 

electroencephalography (EEG), electromyography (EMG), 

electrocardiography (ECG), magnetoencephalography (MEG), 

to magnetic resonance imaging (MRI). For high temporal 

resolution and convenience to the clinicians, ECG, EMG and 

EEG are used to observe heartbeat, muscle status and brain 

activity respectively; in addition, the heart rate variability 

(HRV) analysis can precisely predict the status of heart at rest 

or during exercise [2, 3]. On the other hand, previous studies 

also showed that the power spectrum of EEG changed during 

prolonged exercise [5,6] and after long-term exercise [7], 

which may reflect the alteration in physical and mental status 

of subjects. Bailey et al. indicated that the relaxed condition of 

subject during exercise can be evaluated by the ratio of alpha 

and beta waves in EEG [4]. Furthermore, Cirillo et al. [8] also 

showed that less active adults had longer movement 

preparation in terms of reduced amplitude of the negative slow 

wave cortical potential in EEG and more delayed processing in 

EMG. 

However, there are few studies investigating the 

physiological and neurobiological differences between regular 

and occasional exercisers during physical exercise. In this 

study, we aim to indicate the brain activity and the response of 

muscle and heart during cycling exercise, which is a safer 

exercise for patients with sports injuries [15-17], and an 

effective way for stroke and brain palsy patients to improve 

their motor functions and balance [18,19]. In the present study, 

the EEG was adopted to examine the neural oscillations in the 

alpha, beta, theta, and gamma frequency domains [20]. The 

ECG, used to detect the multistage exercise (Simoons and 

Hugenholtz), was applied by the detrend fluctuation analysis 

and cardiac stress evaluation. The ECG signal was used to 

establish the average maximum heart rate ratio (AMHRR), 

which is inversely proportional to target heart rate and used to 

represent the cardiac strength grade. The EMG, as a tool for 

monitoring the skeletal muscle force, was used to quantify 

proper loading. Hence, we hypothesized that the different 

patterns of regular and occasional exercisers during cycling 

exercise could be indicated by these modalities. 

2 Material and methods 

2.1 Subjects and experimental protocol 

Thirty-three healthy subjects (male: 15, female: 18, age: 

22.15±3.6 years) participated in this study. All participants 

were verified they had no cardiovascular or chronic diseases. 

Before the experiment, each participant had signed an 

informed-consent approved by the Institutional Review Board 

(IRB). The participants were separated into two groups based 

on the time they spent in exercise every week, the ones who 

spent more than 3 hours every week are considered as the 

regular exerciser group (10 male and 10female), and the ones 

who spent less than 3 hours every week are regarded as 

occasional exerciser group (5 male and 8 female). Each subject 

was asked to sit on a bicycle and there were two sessions in the 

cycling experiment: the pretest session and experiment session. 

In the pretest session, each subject was asked to pedal 40 

seconds at the speed of 75 rpm and rest 20 seconds in each 

section. The cycling load was remained constant at each 

section and increased in the next section. The participant had 

to finish 10 sections in the pretest session, in which the load 
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was increased from the lightest to the heaviest from the first to 

the tenth sections. After the pretest session, the participants 

took 5 minutes rest. The EMG power of each section was 

calculated immediately and the load that corresponded to the 

maximum EMG power was considered as the subject-specific 

maximum load. The load that corresponded to 40% of 

maximum EMG power was defined as the subject suitable load. 

 In the experiment session, EEG and ECG were first 

recorded for 5-minutes resting with eye opening (Rest 1). In 

the subsequent three 5-minute cycling exercise sections, there 

were two 30-seconds rest sections in between. Each participant 

was asked to pedal at 75 rpm with the load lighter than his/her 

personal suitable load (stage 1), the subject suitable load (stage 

2), and the load heavier than the personal suitable load (stage 

3). After the stage 3, each subject took the final rest for 5 

minutes (Rest 2). Accordingly, the experiment was proceeded 

in the following order: Rest 1, stage 1, 30-seconds rest, stage 2, 

30-seconds rest, stage 3, and Rest 2. The EEG, ECG and EMG 

signals were collected at Rest 1-2 and stage 1-3 (Fig. 1).  

 
Figure 1. Pretest and experiment sessions. 

2.2 EMG, ECG and EEG data acquisition 

 The EEG was recorded using VAmp amplifier (Brain 

Products GmbH, Munich, Germany) with 1KHz sampling rate 

in which only 9 electrodes, namely, F3, F4, Fz, C3, C4, Cz, P3, 

P4, Pz, and A1 were used according to the international 10/20 

system (Fig. 2). The left mastoid was used as reference for all 

electrodes and the ground electrode was placed on FPz. 

Impedances of the EEG was kept below 20 kΩ during the 

recording. The ECG and EMG are also collected by Vamp 

amplifier with bipolar electrodes. 

 
Figure 2. The experimental setup. Participants were equipped with 9 EEG 

channels, 2 EMG channels for rectus femoris muscle and 2 ECG channels. 

2.3 EEG processing 

 The EEG signals were bandpass-filtered between 0.5 and 

50 Hz for each subject and detrended by the median filter. The 

data were segmented into one-minute segments which were 

proceeded by the Morlet wavelet transform for nine frequency 

bands, namely, delta (1-4 hz), theta (4-8 Hz), low alpha (10-12 

Hz), high alpha (21-30 Hz), low beta (13-21 Hz), high beta (21-

30 Hz) low gamma (30-45 Hz), high gamma (45-60 Hz) and 

the frequency from 0.5 Hz to 50 Hz.  The power in each of the 

nine frequency bands was summed and divided by the power 

of corresponding frequency band of the resting section before 

cycling exercise. The Morlet wavelet was proposed by Morlet 

and Grossmann in the 1980s [14]. The definition of Morlet 

wavelet is as follows: 

    𝑊𝑇(𝑎, 𝑏) = ∫ 𝑥(𝑡)𝜑(𝑎,𝑏)
∞

−∞
(𝑡)𝑑𝑡      (1) 

where  w(s, r) =
1

√|𝑠|
∫ 𝑥(𝑡) 𝜑∗(

𝑡−𝜏

𝑠
)                           (2) 

is the mother wavelet, x(t) is a continuous time signal, a is a 

dimensionless frequency scale variable, and b is a time-like 

translation variable.  

2.4 ECG processing 

The ECG signals of each subject were band-stop filtered 

between 55 and 65 Hz. Every R-R interval was used to 

calculate the heart rate. We further used the average maximum 

heart rate ratio (AMHRR) to monitor the status of each subject 

during the experiment. The AMHRR was defined as follows: 

 AMHRR =
averaged heart rate in each stage−𝑅𝐻𝑅

predicted maximal heart rate (220−age−RHR)
∗ 100%  (3) 

where RHR is the averaged heart rate during resting.  

The Detrend Fluctuation Analysis (DFA) and Cardiac Stress 

Index (CSI) [21] are commonly used methods to evaluate the 

cardiac stress. DFA can quantitatively characterize the 

complexity of time series using the fractal theory. The steps of 

DFA computation is summarized as follows. Let x represent a 

time series of R-R intervals and  �̅�  the average of x, we 

calculate an integrated time series y which is given by 

y(k) = ∑ [𝑥(𝑖) − �̅�]𝑘
𝑖=1        (4) 

The time series y is further divided into segments with the 

length of each segment being n. Each segment is fitted by a 

least squared line, denoted by 𝑦𝑛 . The time series y can be 

detrended locally by each  𝑦𝑛  and we can calculate the root 

mean square of the resulting fluctuation, y - 𝑦𝑛. The root-mean-

square based fluctuation is denoted as F(n) and given by  

 F(n) = √
1

𝑁
∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]2𝑁

𝑘=1  (5) 

The calculation in (5) is repeated for all possible values of n so 

that a linear relationship between log F(n) and the time scale 

log  n can be established to compute the slope  α as follows 

   α =
𝑙𝑜𝑔10F(n)

𝑙𝑜𝑔10(n)
  (6) 

where n is ranged from 4 to 64 in this study 

The CSI can be calculated based on α and given by  

 CSI =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ α lower than 1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠
   (7) 

2.5 EMG processing 

The root mean square (RMS) of EMG signal is often used 

as a concise quantitative index of muscle activity. It can be 

expressed as 
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  𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑛

2𝑁
𝑛=1    (8) 

where 𝑥𝑛  represents the EMG signal. 

 
Figure 3. The processing of EEG, ECG and EMG in this study 

2.6 Statistical analysis 

The Wilcoxon Rank Sum Test was used to evaluate the 

differences between regular exercise and occasional exercise 

groups. In addition, the multiple regression analysis was 

adopted to estimate the association between EEG power and 

AMHRR or RMS of EMG. 

3 Results 

The heart rates and the AMHRR of both groups are 

presented on Table 1. The heart rates and the AMHRR 

increased as the exercise intensity increased in both groups. In 

addition, the occasional exercisers exhibited faster heart rate 

but smaller AMHRR than the regular exercisers. The 

inconsistence between heart rate and AMHRR between two 

group may result from that the occasional exerciser group 

(22.42 ± 3.9years) is elder than the regular exerciser group 

(21.72 ± 2.4years). The result suggested that the occasional 

exerciser group suffered from more cardiac stress while taking 

cycling exercise. 

Table1. The heart rate and AMHRR 

  

 
Figure 4. The results of DFA-α and CSI in regular exercise group and 
occasional exercise group. (Left: Figure 4A illustrates the pattern of the regular 

exerciser group. Right: Figure 4B illustrates the pattern of the occasional 

exerciser group.) 

Figure 4A and 4B demonstrate the results of DFA-α (red 

curves with standard deviations) and CSI (blue curve) analysis 

for regular and occasional exercisers. In general, the regular 

exercisers exhibited higher DFA-α and lower CSI than the 

occasional exercisers. Moreover, the CSI curve of the regular 

exercisers increased late at 300 seconds and diminished 

gradually after it reached the peak. However, the CSI curve of 

the occasional exercisers raised early at 200 seconds and not 

reached the peak directly. Then, during the declination period, 

the CSI curve decreased slightly with sporadic raise. 

 

 
Figure 5. The results of the normalized power of EEG. (Left: Figure 5A 

illustrates for the regular exerciser group. Right: Figure 5B illustrates for the 

occasional exerciser group.) 

Figure 5A and 5B demonstrates the results of the 

normalized power of different spectrum in EEG for regular 

exercisers and occasional exercisers. Generally, almost all of 

the frequency bands in Cz showed significantly different 

(p<0.05) only between the two resting stages before and after 

exercise in the regular exercise group. Apart from the 

normalized power of delta band, the occasional exercise had 

significantly different (p<0.05) power in Cz between every 

nearby stage (i.e. Rest1-Stage1, Stage1-Stage2, and so on). 

However, the normalized power in other channels of the 

regular exercisers were higher but not significantly than the 

occasional exercisers. There was also no difference between 

groups in every stage and every frequency band. Furthermore, 

the results of the multiple regression analysis, the changes of 

normalized EEG power were slightly correlated with AMHRR. 

4 Conclusions 

In the present study, both the results in the EEG and ECG 

demonstrated that the occasional exercisers required longer 

adaptation time on the cardiac and neurobiological responses 

to physical exercise. The occasional exercisers had greater 

cardiac stress than the regular exercisers because of higher 

heart rate and higher DFA- α. The changes of CSI through 

cycling reflected the difference in adaption to exercise between 

groups of regular exercise and occasional exercise. The 

occasional exercisers, who may have less motor memory in the 

 Heart rate Rest1 Stage1 Stage2 Stage3 

Frequency Exercise 88.5±12.7 124.6±

16.7 

138.2±16.7 148.1±18.0 

Less Frequency Exercise 88.5±10.9 132.3±

19.5 

144.0±20.9 156.9±22.8 

AMHRR Rest1 Stage1 Stage2 Stage3 

Frequency Exercise  39.7±16.1 50.6±16.7 62.4±18.4 

Less Frequency Exercise  32.7±13.7 45.3±14.3 54.7±15.2 
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coordination of different muscles and respiratory rhythm, took 

early and more efforts to accomplish the physical task with the 

same loading to individual subject, as the CSI curve raised 

early and decreased slightly with sporadic raise as shown in 

Figure 4B.  

On the other hand, although the group with or without 

habit of exercise had no different normalized EEG power in 

every stage and every frequency band, the within-group 

changing patterns in almost all the frequency bands were 

different between groups. That is, different normalized EEG 

power only occurred in the comparison of two resting stages 

before and after exercise in the regular exerciser, who had only 

slight alteration of the nearby stages. The results represented 

that the regular exerciser called up appropriate strength in the 

very begin of exercise. Nevertheless, as the occasional 

exercisers showing different EEG power between every nearby 

stage, the results could imply that the occasional exercisers 

accommodate the multifold capabilities that were needed for 

exercise while they do this physical performance.  

In the future, mood status and cognitive function may be 

needed to examine the relationship between the findings in the 

present study and different performance, and to provide 

stronger evidence for the neurobiological effects of exercise. 
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