
Cloud, a flexible environment to test HPC I/O configurations

Pilar Gomez-Sanchez1, Sandra Mendez2, Javier Panadero1,3
Aprigio Bezerra4, Dolores Rexachs1 and Emilio Luque1

1Computer Architecture and Operating Systems Department,

Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
2High Performance Systems Division, Leibniz Supercomputing Centre (LRZ),

85748 Garching near Munich, Germany
3IN3 - Computer Science Department, Open University of Catalonia, Barcelona, Spain

4Departamento de Ciencias Exactas e Tecnológicas, Universidade Estadual de Santa Cruz, Bahia, Brasil

pilar.gomez@uab.es, sandra.mendez@lrz.de, javier.panadero@uab.es
aalbezerra@uesc.br, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— The Infrastructure as Service (IaaS), provided by
cloud, has awoken interest among the scientific community
over High Performance Computing (HPC) because Cloud
offers the possibility to access resources with different fea-
tures. In this paper, we show that Cloud can be considered
an alternative for executing an application without waiting
time until the system assigns the resources and it can act as
a HPC I/O Test Bed environment. This platform allows us to
change different components of the I/O stack and to evaluate
the results without affecting the production environment or
the workload. Finally, we present a methodology to evaluate
the configurations of the I/O System and a methodology
to guide user decisions when configuring the I/O parallel
system in a virtual cluster in Cloud.

Keywords: Cloud, I/O System, parallel I/O, I/O Phase

1. Introduction
In many research areas, there is the necessity to have a

test environment (Test Bed) to evaluate proofs of concept,

validate ideas, try implementations or configurations, or

execute an application without affecting the production en-

vironment of High Performance Computing (HPC) systems.

In many cases, the users and administrators have simple,

basic and enclosed test environments for carrying out the

first estimation, validation and/or testing of an idea and

Cloud provides them with the possibility of creating different

environments where it may be possible to carry out tests.

Therefore, different authors have analyzed and evaluated

the cloud platform to verify if it can be an alternative

to traditional clusters and to check the suitability of this

platform for running scientific applications, particularly High

Performance Computing (HPC) applications. In this context,

He et al. [1] present a case study where they analyze different

benchmarks such as NAS Parallel Benchmark (NPB) on

different cloud platforms such as Amazon EC2, GoGrid, and

IBM Cloud. They conclude that the cloud platform can be

an alternative for researchers that do not have applications

to execute on supercomputers but they cannot execute these

applications on a personal computer. In the same line of

thought, Niu et al. [2] consider that the cloud platform can

be an alternative for medium-scale or large-scale clusters.

For this reason, they propose a Semi-Elastic Cluster (SEC)

computing model which allows research groups to reserve

and dynamically re-size a virtual cluster on cloud (Amazon

EC2), to be shared by many users belonging to the same

research group.

The cloud platform offers a lot of opportunities for

researchers because they can create a cluster (public or

private) on this platform, configure the I/O system and install

different filesystems [3] without affecting the work of other

users or the performance of other applications. In contrast,

this is a difficult task in a traditional cluster, due to the

changes that must be authorized by the administrator, or due

to the need for administrator permissions when it is working

in a production environment.

In this paper, we show how the cloud platform can

be an alternative as an environment to test different I/O

configurations and to execute parallel scientific applications

using parallel I/O libraries. Given that the cloud platform

provides different resources, the user has a lot of parameters

to select and values to assign in order to configure the I/O

system. We present a methodology to guide the user in

the selection of storage resources on the cloud platform,

to execute applications and we have adapted it when this

platform is used as a Test-Bed. The proposed methodology

is based on using the application I/O behavior information

to carry out the tests during the system configuration. In our

case, this behavior information is obtained with PIOM.

This article is organized as follows. Section 2 introduces

our methodology to analyze the applications. In Section

3, we present the methodology to guide the user to work

in cloud. In Section 4, we show the experimental results.

Finally, in Section 5, we present the conclusions.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 | 197

ISBN: 1-60132-487-1, CSREA Press ©

2. Application analysis
A real parallel application can be executed on the cloud

platform but there are several drawbacks such as the appli-

cation execution time and the number of resources that are

needed. In this section, we present the methodology that we

use to analyze the MPI parallel applications at I/O level.This

is because our interest is focused on the behavior of I/O

parallel message passing (MPI) applications to attempt to

analyze the impact of these applications on the I/O system

and vice-versa.

2.1 Application I/O behavior model: PIOM
Firstly, it is necessary to know the parallel application

I/O behavior. To that end, we have proposed PIOM, which

is a model that allows us to show and understand the

application I/O behavior (at MPI-IO level [4] and at POSIX-

IO level PIOM-PX [5]) and to extract the application I/O

requirements.

PIOM analyzes every file opened by the application and

detects the I/O phases of access to every file. PIOM is

a model based on the I/O phase concept, where an I/O

phase is I/O operations consecutive sequence in a file. In

Table 1, all the necessary characteristics are shown that we

have considered to identify/define an application and for this

reason, they are represented in the PIOM model to obtain

the application I/O behavior. The characteristics have been

classified depending on the level on which the information

is provided: application, file and I/O phase.

Once the application I/O behavior has been obtained

using PIOM, monitoring the application when it has been

executed once in the cluster, a synthetic program with this

I/O behavior is replicated. As this behavior is independent

of the system in which the application is monitored, it

can be used to replicate it in other systems. From this

synthetic program, the I/O kernel of the parallel application

in different HPC systems can be executed; which in our case

is the cloud platform. The advantage of using the synthetic

program is that it is not necessary to move the real data of

the application or to execute the compute of application.

Depending on the analysis type to which the user wants

to subject the application, it is only possible to replicate the

more significant I/O phases, which have more impact on the

application I/O behavior.

To analyze the results, there are different metrics to be

considered such as data transfer rate, I/O time, I/O operations

per second, performance and cost.

3. Building a Virtual Cluster on Cloud
No matter what the analysis goal of the application is, it

is necessary to create the Virtual Cluster on Cloud (VCC)

and the storage system to execute the application with I/O.

The cloud platform provides a set of different instances that

the user has to select. The instance selection is not trivial

because an instance type is comprised of a combination of

CPU, memory, storage (temporary and/or permanent), and

networking capacity. For this reason, we have proposed a

methodology (see Figure 1) to guide the user to select, create

and configure a VCC.

Fig. 1: Methodology to build an HPC-I/O subsystem for an

application that it is executed in a VCC.

To create a VCC, the user has to take into account the

application I/O requirements and the user requirements (the

cost that the user can spend or the time that the user can

wait). We have presented a methodology to guide the user

in resource selection to configure the HPC-I/O subsystem,

• Using PIOM to obtain the application requirements and

the application I/O behavior model.

• Selecting the instance, the user has to take into account

the I/O node characteristics that he will employ in the

cluster (reference system) to look for similar instances

to create the VCC and validate the similarity with IO-

zone [6] for the I/O patterns observed in the application.

• Creating the VCC, taking into account the computing

needs, the strategy followed is 1 process per core. For

the I/O, different configuration changes are carried out

such as resources (number of instances, instance types,

dedicated or shared instances) and customer mapping.

• Installing the filesystem (NFS, PFS, number of data

servers of PFS).

• Characterizing the HPC-IO subsystem using a synthetic

program.

From the point of view of hardware architecture, the

analysis possibilities use temporary or permanent storage,

independent nodes to do I/O and computing or share the

nodes to do I/O and computing.

198 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 |

ISBN: 1-60132-487-1, CSREA Press ©

Table 1: PIOM Model Characteristics

Level Identifier Description Origin
Application

app_np Number of processes that the application needs to use in the I/O. Post-process
app_nfiles Number of files used by the application. Post-process
app_st Data volume that application moves. Post-process

File
file_id File Identifier. Trace File
file_name File Name. Trace File
file_size File Size. Post-process
file_np Count of MPI processes that open the file file_id. Post-process
file_accessmode This can be sequential, strided or random. Post-process
file_fileaccesstype Read only(R), write only (W) or write and read (W/R). Trace File
file_accesstype file_np processes can access to shared Files or 1 File per Process. Post-process
file_nphase Count of phases of the file. Post-process

I/O Phase (PhIO)
Ph_id Identifier of an I/O Phase. Post-process
Ph_processid Identifier of Process implied in the phase. Post-process
Ph_np Number of processes implied in the phase. Post-process
Ph_weight Transferred data volume during the phase. It is expressed in bytes. Post-process
Ph_nrep Number of repetitions per phase. Post-process
Ph_niop Number of I/O operations. Post-process
IOP_type Data access operation type (read, write, MPI_read, MPI_write,...). Trace File
rs Request size or size of an I/O operation. Post-process
offset Operation offset, which is a position in the file’s logical view. Trace File
disp Displacement into file, which is the difference between the offset of

two consecutive I/O operations.
Post-process

dist Distance between two I/O operations, which is the difference between
tick.subtick of two consecutive I/O operations.

Post-process

3.1 Characterization and selection of node or
instance to build the Virtual Cluster.

We apply IOzone benchmark to obtain the average values

for the transfer rate at local filesystem level. IOzone is a

filesystem benchmark tool that generates and measures a

variety of file operations. We only analyze the write/rewrite

and read/reread operations.

Taking into account the application I/O requirements

obtained with PIOM, in particular, the request size (rs) that

the application uses is obtained. This information allow us

to evaluate the instance in a specific range determined by

the request size used by the application. As a consequence,

the evaluation time of instances is reduced. This step allows

us to estimate the bandwidth that can be obtained from 1

data server.

3.2 Creation of the Virtual Clusters
A Virtual Cluster is represented by the components shown

in Table 2. The components that can be selected by the

user are identified with (*), the components that the user

must configure manually are marked with (-), and the

components that the user cannot change because they are

default, depending on instance type, are indicated with (+)

[7].

The baseline software on a VCC for each compute node

depends on the Machine Image selected. Similar to physical

HPC systems, the Linux operating system is more commonly

used in the HPC on cloud, especially for the I/O Software

Table 2: Components of Virtual Cluster configurable

Parameters Description
Instance type (*) Number of cores, processor capac-

ity, RAM memory size.
Number of instances(*)
Number of I/O nodes (-) Data servers and metadata server
Storage type(+) Temporal and/or persistent
Device type temporal(+) HDD or SSD
Device type persistent(+) HDD or SSD
Capacity of temporal stor-
age(+)

As minimum the storage capacity
required

Capacity of persistent
storage(-)
Network performance (+) Low, Moderate, High, Unknown
I/O library (-) MPI, NetCDF, pnetcdf, HDF5.
Local filesystem (+) Filesystem Linux ext3, ext4, xfs,

etc.
Global filesystem (-) Parallel, Distributed or Network

Filesystems
Stripe size (-) Related by the parallel file system

Stack. The previous components such as instance type and

storage capacity allow a decision to be made considering

the I/O requirements for the application. However, as the

user pays for the utilization, the cost is one of the main

restrictions to the creation of a Virtual Cluster.

3.3 Configuration of the HPC I/O subsystem in
the Virtual Cluster

When they use shared files, parallel applications need a

global file system to share the input and output data. Usually

the HPC-I/O subsystem must be configured by the user in

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 | 199

ISBN: 1-60132-487-1, CSREA Press ©

Fig. 2: I/O Software Stack

a cloud environment. The I/O Software Stack (see Figure

2) is comprised of a Scientific Data Library (like HDF5 or

NetCDF), I/O Middle-ware (like MPI-IO), POSIX-IO and

Parallel File System (like GPFS, Lustre or PVFS2) [8].

Depending on the application I/O pattern, the type of file

system can have a negative impact on the I/O performance.

The most common global file systems in HPC cluster

are NFS and parallel file systems like Lustre, GPFS or

PVFS2[9].

In general, parallel file systems have several parameters

that affect the performance.

3.4 Deploying a Virtual Cluster
In order to deploy the virtual cluster, we use the StarClus-

ter tool [10]. This tool helps users and system administrators

to create a virtual cluster using instance of Amazon’s EC2

platform [11]. StarCluster deploys a Linux cluster with NFS,

while the user must install and configure the parallel file

system.

Firstly, we select a small instance such as t2.micro. From

an image (AMI) of StarCluster such as ami-6b211202, a

little cluster is created to install the software that the user

needs and it is checked that all software runs correctly.

To configure the PVFS2 file system, users must specify

all configuration parameters of PVFS2, as explained in [12].

They must also specify the placement of the MDS and DFs

within HPC cluster architecture. In this case, we define two

placements for the DFs: 1) a DF defined on each compute

node of the cluster or, 2) DFs defined on independent nodes,

which means that these will only be I/O nodes.

Secondly, a new image is created. Finally, with the new

AMI and the instance selected by the user, the VCC is

created which is used as a Test-Bed or virtual cluster.

4. Experimental Results
When the user needs to analyze how a change in the user’s

HPC I/O subsystem can affect a parallel application, they

can use cloud to carry out this analysis before modifying

the production cluster.

We present the evaluation of the parallel application

ABySS (Assembly By Short Sequences) [13], which reports

slow running using NFS on the CACAU [14] (reference

system).The user provides us with the input data and specific

parameters to evaluate ABYSS.

In this work, we focus on comparing the configuration

impact with NFS and PVFS2[15] to analyze if PVFS2 is

an alternative to NFS. PVFS2 is an open source file system

developed to support efficient read and write operations for

large amounts of data. PVFS2 is designed as a client-server

architecture where the server provides the storage and the

client has the access logic to the distributed storage. Servers

can be classified into datafile (DF) and metadata servers

(MDS). The former keep parts of logical files while the latter

keep attributes of the logical file system objects (files and

directories in PVFS). Usually every I/O node is either a DF

or an MDS.

4.1 ABySS Application Description
ABySS is a parallelized sequence assembler. ABYSS is

an example of a de novo assembling algorithm, where the

construction of a genome occurs in its pure form, without

consulting previously resolved genome references. ABySS

enables a distribution of the assembly algorithm in a parallel

way (master/worker architecture). This is possible because it

uses a distributed representation of a de Bruijn graph [16].

However, there are reports that indicate problems in

ABySS algorithm scalability. Costly communication and

load-balancing inefficiencies emerge from the larger scale.

This is because the algorithm executes a master-worker

model with asynchronous message/work complex queues,

and it uses MPI P2P and collective communication that

varies by execution stage.

Analyzing the ABySS I/O properties
We perform an I/O pattern analysis in LRZ’s HPC systems

[17] where PIOM is installed and we define a set of different

configurations of the I/O system to be implemented in a

cloud environment. ABySS-P uses a total of np∗2 temporary

write files, two input files and one output file, where np is the

number of MPI processes for the parallel execution. Input

files are read in a first phase where only the rank 0 and

1 read a file, each one independently from the number of

MPI processes. The read phase moves more than 90% of the

data and I/O operations of ABYSS-P. Table 3 shows detailed

information by using a different number of MPI processes

which only focus on the read phase. Two files of 17 GiB

are read by two I/O processes (I/O proc) that correspond to

rank 0 and rank 1. Request size (rs) and access mode are

independent of the number of MPI processes.

Figure 3 depicts the temporal pattern for ABySS-P, where

we can observe that only the first two processes perform

read operations in the two input files (reads1.fastq and

reads2.fastq files, test input files). The application is

executed by 4 processes but only the processes to rank 0

and 1 read the test input files. It can be observed that PIOM

shows the event order (T ick) of I/O operations and the file

offset. The colour corresponds to the request size of I/O

operations. Write operations take a short time, so for this

reason we cannot observe them on the timeline.

200 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 |

ISBN: 1-60132-487-1, CSREA Press ©

Table 3: Read Phase for ABYSS-P by using np MPI

processes for two real input files.

np rs(B) I/O File x #iop Data x Phase
proc I/O I/O Data

proc proc Data
(GiB) (GiB)

4 8191 2 1 2135744 x 2 17 33
32 8191 2 1 2135744 x 2 17 33
64 8191 2 1 2135744 x 2 17 33
128 8191 2 1 2135744 x 2 17 33
512 8191 2 1 2135744 x 2 17 33

Fig. 3: ABYSS-P’s I/O characteristics reported by PIOM

tool for 4 MPI processes and test input files.

Once the pattern for this case has been analyzed, we need

to define the general phases and the I/O pattern that will

be applied to replicate the behavior of ABYSS-P. Table 4

shows the concept at phase level for the two real input files.

Table 4: ABySS Phases for the input files.

Concepts Phases
file_id File1 File2
Ph_id Ph1 Ph1
Ph_processid 0 1
Ph_np 1 1
Ph_weight 17GiB 17GiB
Ph_nrep 1 1
Ph_niop 2135745 2135745
IOP_type r r
rs 8191 8191
offset 8191 8191
disp 8191 8191

We use IOR benchmark [18] as a synthetic program.

However, it cannot replicate all applications’ I/O patterns.

IOR (IOR 2.10.3) was customized to replicate ABYSS-P

where each process reads a file of 17 GB. However, moving

this data volume to the Cloud impacts on time and cost. For

this reason, we use IOR because it allows us to replicate

the application I/O behavior, omitting the computing and

communication time. For this application, we only focus on

the read phase (see Table 3).

The IOR benchmark is configured as follows:

mpirun -np 2 ./IOR -r -N 1 -a POSIX
-b 17496014848 -t 8192 -k

where:

• -np represents the number of MPI processes to evalu-

ate.

• -r selects only read test because we are only analyzing

the ABYSS-P’s read phase.

• -N sets up the number of I/O processes, in this case 1.

• -a sets up the I/O library. In this case, POSIX because

this application does not use MPI-IO functions.

• -b defines the contiguous data in bytes to read for each

I/O process that corresponds to the total size of an input

file of ABYSS-P. In this case, 17496014848 bytes.

• -t defines the request size in bytes that in this case is

8192 because IOR does not allows the value 8191.

• -k indicates that the read file has not be removed when

the test finishes.

To replicate the I/O concurrency in two input files, two

concurrent executions of IOR with the previous configuration

are run on different configurations of the I/O system.

4.2 Creation of VCC
To select the instance type for the testing, we try to use an

instance with similar characteristics to the compute nodes of

the CACAU0 cluster [14]. CACAU0 has 8 CPU cores per

node and 16GiB RAM memory per node.

The AWS EC2 instance similar to the CACAU0 is the

c3.2xlarge (see Table 5) because this instance has 8 CPU

cores per node and 15 GiB of RAM memory. Two Virtual

Clusters are configured with this type of instance that are

described in Table 6.

For each VCC we use six instances (six nodes) to evaluate

NFS and PVFS2 file systems. We create clusters with one

master and five compute nodes and/or I/O nodes. This

number of nodes allows us to change the configuration: to

have the compute nodes and I/O nodes shared or to have

the compute nodes independent of I/O nodes. The c3.2xlarge

instance provides two SSD as temporal storage (ephemeral).
We use a persistent storage to install the software and if we

change the instance only we have to add this storage to

the new instance. We do not need to install once again the

software.

4.3 Configuring the different HPC I/O subsys-
tems on cloud

A set of experiments is designed by using the IOR con-

figuration defined in Section 4.1. To analyze the contention

problem in the node we use two mappings: a process in

different nodes (1PxCN) and two processes in the same node

(2PxCN). These experiments are executed in the following

scenarios:

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 | 201

ISBN: 1-60132-487-1, CSREA Press ©

Table 5: Characteristics of the Amazon’s Instance Selected

Instances Processor vCPUs RAM(GiB) Storage(GB) Network
c3.2xlarge Intel Xeon E5-2680 v2 (Ivy Bridge) 8 15 2x80 (SSD) High

Table 6: Descriptive Characteristics of the Virtual Clusters on cloud (VCC) configured equal for the experiments.

I/O components VCC 1 VCC 2
Instance c3.2xlarge c3.2xlarge
Number of Instances 6 6
Temporal Storage Ephemeral Ephemeral
Persistent Storage EBS EBS
Temporal Device SSD SSD
Persistent Device SSD(GP 192/3000) SSD(GP 300/3000)
Capacity of Persistent Storage 100GB 64GB
File system Local ext4 ext4
File system Global NFS PVFS2 (2.8.8)
Parallel Storage Capacity - 400GB
Number of data servers (DFs) - 5
Number of Metadata Server (MDS) - 1
Stripe Size - 64KB
MPI library mpich-3.2 mpich-3.2

• NFS: NFS is in the master node. We use three nodes:

two compute and one I/O node.

• PVFS2:

– Each input file placed in a different DF (1DFx1F).

– Each input file stripped into different numbers of

DFs (1DF, 2DF, 3DF).

The mapping is considered because each process reads a

17 GB file, which has an impact on memory utilization and

it can impact on the application performance, especially for

compute nodes with less than 33 GB of RAM.

4.4 Analyzing the I/O behavior on different
scenarios

We evaluate the I/O kernel of the ABYSS-P in the

scenarios defined in section 4.3 and we obtain different

performance metrics on NFS (filesystem that is using the

reference system) and PVFS2. In this case, we present the

result of the data transfer rate and I/O operations per second

(IOPs). Figure 4 presents results for the c3.2xlarge instance.

The x-axis represents the different configurations for the file

system NFS and PVFS2 by using a different number of

DFs. Mapping an I/O process in different compute nodes is

represented by the label 1PxCN, and 2PxCN represents the

mapping of the two I/O processes in the same compute node.

The configuration PVFS-1DFx1F means that each input file

is striped to one DF but different DFs for the two files.

The results show that NFS reports more data transfer

rate and IOPS than PVFS and it can be observed that the

bandwidth does not improve by using more DFs.

On PVFS2, we can observe an improvement for 1PxCN.

The data layout 1DFx1F reports more performance than

other PVFS2 I/O configurations.

Discussion ABYSS-P is a parallel application that is

reading from two files by using an I/O process for each

Fig. 4: Data transfer rate and IOPs for IOR configured to

ABYSS-P’s I/O Kernel using instance c3.2xlarge.

202 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 |

ISBN: 1-60132-487-1, CSREA Press ©

file. This behavior is the same independent of the number of

MPI processes. This I/O pattern cannot take advantage of the

performance capacity provided by a parallel filesystem like

PVFS2. The results in Figure 4 show this problem. Although

we increase the number of DFs, the I/O performance presents

similar values.

Furthermore, the small request size impacts on the per-

formance of PVFS2 when only one process is carrying out

I/O. We can observe that NFS can provide an acceptable

I/O performance. However, we must to take care in this

point because the NFS filesystem for this kind of application

should be different to the NFS for home user accounts.

Moreover, we have not evaluated the impact that the stripe

size can have.

During the process of the I/O pattern extraction needed to

define the I/O kernel of ABYSS-P, we have observed that

the I/O pattern is a problem for the scalability. Due to the

fact that only two processes are reading the input files and

sending read data to the rest of the processes, this is clearly

an inefficient I/O pattern and an obstacle for the ABYSS-P

scalability.

5. Conclusions
The cloud platform has awoken interest among the High

Performance Computing (HPC) scientific community be-

cause the IaaS service (Infrastructure as Service) allows

access to different resources, enabling us to create and

configure our own virtual cluster to execute, analyze and

evaluate the parallel applications. We have shown that cloud

is an alternative for users to evaluate the HPC I/O subsystem

configurations without affecting the production environment

of HPC systems.

6. Acknowledgements
This research has been supported by the

MICINN/MINECO Spain under contracts TIN2014-53172-

P and TIN2017-84875-P and partially supported by the

CloudMas as Government Competency of AMAZON Web

Services (AWS).The research position of the PhD student

P. Gomez has been funded by a research collaboration

agreement, with the "Fundación Escuelas Universitarias

Gimbernat". The authors thankfully acknowledge the

resources provided by the Centre of Supercomputing of

Galicia (CESGA, Spain) and the Leibniz Supercomputing

Centre (LRZ, Germany).

References
[1] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn,

“Case study for running hpc applications in public clouds,”
in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC ’10. New
York, NY, USA: ACM, 2010, pp. 395–401. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851535

[2] S. Niu, J. Zhai, X. Ma, X. Tang, and W. Chen, “Cost-effective cloud
hpc resource provisioning by building semi-elastic virtual clusters,” in
2013 SC - International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov 2013, pp. 1–12.

[3] M. Liu, J. Zhai, Y. Zhai, X. Ma, and W. Chen, “One Optimized I/O
Configuration Per HPC Application: Leveraging the Configurability
of Cloud,” in Proceedings of the Second Asia-Pacific Workshop on
Systems. ACM, 2011, pp. 15:1–15:5.

[4] S. Méndez, D. Rexachs, and E. Luque, “A methodology to characterize
the parallel i/o of the message-passing scientific applications,” in Pro-
ceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA). The Steering
Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2013, p. 436.

[5] P. Gomez-Sanchez, S. Mendez, D. Rexachs, and E. Luque, PIOM-PX:
A Framework for Modeling the I/O Behavior of Parallel Scientific
Applications. Cham: Springer International Publishing, 2017, pp.
160–173.

[6] W. D. Norcott. (2006) IOzone Filesystem Benchmark. [Online].
Available: http://www.iozone.org/

[7] P. Gómez Sánchez, S. Méndez, D. Rexachs del Rosario, and E. Luque,
“Hopes and facts in evaluating the performance of hpc-i/o on a cloud
environment,” Journal of Computer Science & Technology, vol. 15,
2015.

[8] R. Ross, R. Thakur, and A. Choudhary, “Achievements and challenges
for i/o in computational science,” Journal of Physics: Conference
Series, vol. 16, no. 1, pp. 501+, 2005.

[9] Prabhat and Q. Koziol, High Performance Parallel I/O, 1st ed.
Chapman & Hall/CRC Computational Science, 2014.

[10] StarCluster. (2014) An Open Source Cluster-Computing Toolkit
for Amazon Elastic Compute Cloud (EC2). [Online]. Available:
http://star.mit.edu/cluster/

[11] AWS-EC2. (2017) Amazon Elastic Compute
Cloud, Instance Types. [Online]. Available:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-
types.html

[12] PVFS2, “Config File Description,” PVFS2, Tech. Rep.,
2016. [Online]. Available: http://www.pvfs.org/cvs/pvfs-2-8-branch-
docs/doc//pvfs-config-options.php

[13] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
I. Birol, “Abyss: a parallel assembler for short read sequence data,”
Genome research, vol. 19, no. 6, pp. 1117–1123, 2009.

[14] CACAU, “Núcleo de Biologia Computacional e Gestão de
Informações Biotecnológicas,” Universidade Estadual de Santa Cruz,
Tech. Rep., 2016. [Online]. Available: http://nbcgib.uesc.br/nbcgib/

[15] N. Miller, R. Latham, R. Ross, and P. Carns, “improving cluster
performance with pvfs2,” ClusterWorld Magazine, vol. 2, no. 4, 2004.

[16] P. A. Pevzner, H. Tang, and M. S. Waterman, “An eulerian path
approach to dna fragment assembly,” Proc Natl Acad Sci USA, vol. 98,
no. 17, pp. 9748–53, Aug. 2001.

[17] LRZ, “Leibniz Supercomputing Centre,” Bayerischen Akademie
der Wissenschaften, Tech. Rep., 2016. [Online]. Available:
http://www.lrz.de/services/compute

[18] W. Loewe, T. McLarty, and C. Morrone. (2012)
IOR Benchmark. Accessed: 2016-05-14. [Online]. Available:
https://github.com/chaos/ior/blob/master/doc/USER_GUIDE

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 | 203

ISBN: 1-60132-487-1, CSREA Press ©

