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Abstract— Sparse Matrix Vector Product (SMVP) is an im-
portant kernel in many scientific applications. In this paper
we study the performances of this kernel on multiprocessor
platform using four different compression format (CSR, CSC,
ELL and COO). Our aim is to extract runtime environment
parameters, matrix characteristics and algorithm parame-
ters that impact performances. This work is in the context
of implementing an auto-tuner system for Optimal sparse
Compression Format (OCF) selection.
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1. Introduction
Several applications in scientific computing handle large

sparse matrices with regular or irregular structures. To re-

duce both spatial and temporal complexities, these matrices

require the use of a particular data storage format as well

as the use of parallel or distributed target architectures. For

this purpose, many particular structures for sparse data com-

pression are known in the literature. The used compression

format may highly affect the performance of the sparse

application. The choice of the most appropriate one generally

depends on several factors including: the matrix structure,

the architecture of the target platform, the numerical method

and the parallel programming model. Given the diversity

of these factors, an optimized choice for one set of input

data can lead to poor performance for another. Hence the

interest of using a system allowing the automatic selection

of the optimal Compression Format (OCF) by taking into

account these different factors. In this context, we presented

the modeling of a auto-tuned system which, given a sparse

matrix, a numerical method, a parallel programming model

and an architecture, can automatically select the OCF and

propose its associated implementation [1][2]. In a first step,

we validated our modeling with a case study involving (i)

Horner scheme, and Sparse Matrix Vector Product, as a

numerical method, (ii) CSC, CSR, ELL, and COO as com-

pression formats, (iii) parallel data as a programming model

and (iv) a multiprocessor platform as target architecture. This

study allows us to extract a set of metrics and parameters

that affect the selection of the OCF [1][2]. We showed

that metrics extracted from the data parallel model analysis

are not enough to make a decision (selection of the OCF).

Therefore, we defined new metrics involving the number of

operations and the number of indirect accesses (access to an

array element). Thus, we proposed a new decision process

that takes into account both the analysis of the data parallel

programming model and the analysis of the algorithm [2].

In this paper, we focus on extracting the main parameters

that affect the choice of the OCF and that are related to

runtime environment. For that, we choose Sparse Matrix

Vector Product (SMVP) as a case study since it represents an

important kernel in many scientific applications that involve

iterative operations. We study its performances using four

different compression formats namely CSR, CSC, ELL and

COO on a multiprocessor platform. We start with applying

data parallel model to our computing kernel for each format.

Therefore, data (nonzero elements) are mapped to a virtual

geometry where each element of the geometry represents

a virtual processor. A set of virtual processors are then

affected to a physical one that is involved in the computing.

For assigning virtual processors to physical processors, we

use the Sorted Generalized Fragmentation with Balanced

Number of Non-zeros algorithm (S-GBNZ) [8].

This paper is organized as follow: in section 2 we present a

state of the art on SMVP drawbacks defined in the literature.

In section 3, we present sparse compression format used in

our study. In section 4 we present SMVP algorithm for each

studied compression format. Section 5 is devoted for data

parallel model presentation. It explains how data are mapped

to processors. Experimental results are presented in section

6.

2. SMVP drawbacks
In this section we try to summarize the most commonly

known drawbacks that impact the SMVP performances. we

summarize these in the following points:

• Short vectors: in sparse matrices, generally, rows and

columns have small number of nonzero elements which

create an overhead with significant cost [6][9][10].
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• Indirect memory access: the use of compressed format

causes a large number of indirect access. This is due to

the use of array elements to compute the position of a

non-zero element at each iteration [6][9][11].

• Irregular memory access: this this due to the irregular

access to vector X which depends on the sparcity

structure of the matrix[9].

3. Sparse Compression Format
Several formats are proposed in literature to optimize

sparse matrix storage. In this paper we study the perfor-

mances relative to four different formats:

• Due to its simplicity and effectiveness, the CSR (Com-

pressed Sparse Row) format remains the most used.

To store an n × n sparse matrix A with nnz nonzero

elements, CSR format uses three arrays: val, of size

nnz, to store the nonzero elements of A on a row-

wise (from row 1 to row n), col_ind, of size nnz, to

store column indices of each stored element in val. and

row_ptr, of size n+1, to store pointers on the head of

each row in arrays val and col_in with row_ptr(n) =
nnz (Fig.1).

• In opposite of CSR, the Compressed Sparse Column

(CSC) uses the arrays val to store the nonzero elements

of A on a column-wise. By analogy, it uses two other

arrays: row_ind, to store row indices of each stored

element in val. and col_ptr, of size n + 1, to store

pointers on the head of each column in arrays val and

row_ind with col_ptr(n) = nnz (Fig.2).

• The COO (COOrdinate) format uses also three array

to store sparse matrix: val, of size nnz, to store the

nonzero elements of A, row_ind and col_ind, of size

nnz, to store respectively row and column indices of

each stored element in val (Fig. 3). In this paper,

we assume that non zero elements are stored in row

(COOR) or column (COOC) order.

• The ELLPACK/ITPACK(ELL) format uses two 2D

arrays, val (the ELLPACK matrix)and ind, of size

n × nzmaxR, to store a matrix with row or column

compression. In this paper, we present the ELL format

with a row compression (Fig. 4). Each row i of val is

used to store the compressed ith row of A. the second

array ind stores the corresponding column indices

of each element in val (nzmaxR is the maximum

number of nnz elements per row). Extra elements are

padded with zeros.

4. Sparse Matrix Vector Product
(SMVP)

Sparse Matrix Vector Product is an important computing

kernel on sparse numerical methods. Let A be a (n × n)

sparse matrix with nnz nonzero elements. Our aim is to

Fig. 1: CSR format

Fig. 2: CSC format

compute Y = A×X , where X is an input dense array with

n elements and Y the result array. The SMVP algorithm

depends on the used compression format for storing the

sparse matrix. Thus, we evaluate four different optimized

implementations of the SMVP kernel.

5. Data parallel programming model
In this paper, we present our study using the Data

Parallel (DP) programming model. Indeed, we apply the

same computing kernel (SMVP) on different matrix portions.

According to this programming model, data is structured

onto a virtual geometry representing the layout of virtual

processors. In [4], some parameters are presented to evaluate

and compare data parallel algorithms. We use extracted

parameters to select the OCF [1][2].

Let:

• p be the number of virtual processors in the virtual

geometry (1D, 2D, . . .),
• α be the number of virtual processors concerned by a

data parallel operation,

• cx be the number of data parallel operations (other than

communications).

The computation ratio for a data parallel operation ops is

defined by
αops

p then, the average computation ratio is:

Φ =
1

cx

αops=cx∑
αops=1

αops

p
(1)

The best data parallel algorithm to solve a scientific problem

is the one with the smallest cx (the numerical aspect is

supposed correct). Thus, the data parallel algorithm which

maximizes Φ is often chosen [4].

In this paper, we use SMVP as a computing kernel. Let A
be a (n× n) sparse matrix. We organize a one-dimensional
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Fig. 3: COO format

Fig. 4: ELLAPCK/ITPACK format

virtual geometry (with n virtual processors), on which we

map and distribute data relatively to the used compressed

format.

5.1 Row-wise format
When nonzero elements are stored in row order (CSR,ELL

and COOR), each ith row of the matrix is mapped on a

virtual processor i. Vector X is aligned on each element

of the geometry. Each ith virtual processor of the geometry

performs a dot product of row i of the matrix by vector

X using only one data parallel vector operation (α×=1). In

worst (respectively best) cases, the cost of this data parallel

operation is nzmaxR (respectively nzminR). nzmaxR
(respectively nzminR) is the maximum (respectively min-

imum) number of nnz elements per row. The ith virtual

processor of the geometry stores the ith component of A×X .

Then partial results are gathered to have the final result Y .

5.2 Column-wise format
When nonzero elements are stored in column order (CSC

or COOC), each jth column of the matrix with the cor-

responding element of x (jth element) are mapped on the

jth virtual processor of the geometry. Each virtual processor

j updates the vector Y : it performs a "saxpy" operation

involving the jth column of the matrix (val(:, j)) and the

jth element of the vector X (X(j)). In worst (respectively

best) cases, the cost of parallel saxpy operation is nzmaxC
(respectively nzminC). nzmaxC (respectively nzminC)

is the maximum (respectively minimum) number of nnz
elements per column. Then, we have to sum the partial

results with data parallel reduction with vector addition

operation (with complexity O(log2(n)))
Table 1 represents metric extracted from applying data

parallel model on SMVP computing kernel.

Algorithm 1: SMVP for CSR format

1 for i=1 to n do
2 s = 0;

3 e = row_ptr[i+ 1];
4 for j= row_ptr[i] to e do
5 indX = col_ind[j];
6 s = s+ val[j]×X[indX];
7 end
8 Y [i] = s;

9 end

Algorithm 2: SMVP for CSC format

1 for i=1 to n do
2 x = X[i];
3 e = col_ptr[i+ 1];
4 for j= col_ptr[i] to e do
5 indR = row_ind[j];
6 Y [indR] = Y [indR] + val[j]× x;

7 end
8 end

6. Experimental study
This section is devoted to the presentation of experimental

study and the interpretation of results.

6.1 Experimental setup
6.1.1 Matrices dataset

Our matrices dataset is composed of:

• Real matrices selected from Tim Davis collection of

sparse matrices (structured and unstructured matrices)

[5]. These matrices cover a wide spectrum of do-

mains such as structural engineering, computational

fluid dynamics, electromagnetic, optimization, circuit

simulation etc,

• Generated structured sparse matrices (diagonal and tri-

angular matrices),

• Pathological matrices (Figure 5),

Table 2 represents statistics on matrices used in our study.

Fig. 5: Example of pathological matrices used in our tests

160 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'18  |

ISBN: 1-60132-487-1, CSREA Press ©



Algorithm 3: SMVP for ELL format

1 for i=1 to n do
2 s = 0;

3 j = 0;

4 while j <nzmaxR and 0 <val[i][j] do
5 IND = ind[i][j];
6 s = s+ val[i][j]×X[IND];
7 j ++;

8 end
9 Y [i] = s;

10 end

Algorithm 4: SMVP for COO format

1 for i=1 to nnz do
2 indR = row_ind[i];
3 IND = col_ind[i];
4 Y [indR] = Y [indR] + val[i]×X[IND];
5 end

6.1.2 Experimental platform

We run SMVP on a multiprocessor platform (Table 3)

with 100, 140, 160 and 200 physical processor.

6.1.3 Data scheduling

To assign virtual processors to physical processors, we use

the S-GBNZ approach. This later is proposed in [8] for the

SMVP partitioning on a large scale distributed systems. The

objective of this algorithm is to decompose a sparse matrix

into noncontiguous row blocks by balancing the number of

nonzero elements between blocks (Figure 6). The S-GBNZ

approach consists of three phases as follows:

• Phase 0 is a sorting phase; it consists in sorting the input

matrix rows in decreasing number of nonzero elements.

• Phase 1 is based on LS heuristic (List Scheduling).

In the first step, the first p rows of the input matrix

are assigned respectively to the p partitions (p is the

number of fragments): each row i(i = 1...p) is assigned

to the ith partition. Thereafter, the remaining rows are

assigned to the fragments based on their load (number

of nonzero elements).

• Phase 2, which is a phase of improvement, is an itera-

tive heuristic. It allows, through successive refinements,

to improve the previous partitioning, leading to a better

balance. The chosen criterion is IF (Imbalance Factor)

which is defined as the difference between the maximal

and the minimal loads. This phase consists on making

exchanges or transfers between successive rows of the

partition with the maximal load and the least loaded

one.

Table 1: Vector data parallel metrics

CSR/ELL/COOR CSC/COOC

cxvect 1 1
pvect n n
α× n n

costV ops nzmaxR nzmaxC

Fig. 6: S-GBNZ algorithm

6.2 Results Interpretation
Statistics presented in this section represents the results

of 3000 different SMVP using different compression format

namely CSR, CSC, ELL and COO (COO_R and COO_C).

Table 4 represents notations used in this section.

6.2.1 Data access
Let PPload_mx be the most loaded processor (with max-

imum nnz elements) and PPtmax the processor with the

maximum execution time (tmax). We make statistics on

SMVP performances. Figure 7 shows that, in the case of

the four studied format, it is very uncommon that the

most loaded process be the one with worst performances

(PPload_mn =PPtmax). We conclude that the load of the

processor (nnz elements on which depends operation num-

bers), is not a sufficient criterion to describe its computa-

tional load. Analyzing SMVP algorithm (Algorithms 1,2,3

and 4), we remark that the increasing number of read/write

data and indirect access at the same time affect its perfor-

mances (Table 5). Therefore, we choose to attribute a cost
to SMVP that represents PPtmax. Since each format has its

own cost, we define:

CSRcost = (3× nrPPtmax + 6× nzPPtmax)×Rcost

+ (4× nrPPtmax + 3× nzPPtmax)×Wcost

+ (2× nrPPtmax + 4× nzPPtmax)×ACcost

+ 2× nzPPtmax ×OPcost (2)
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Fig. 7: Statistic

Table 2: Statistics on Matrix Dataset
n nnz Density

[362: 2.99E+06] [1000:2.10E+09] [0.0001:80]%

Table 3: Experimental platform
Cluster within Grid5000 platform

#Node 5, 7, 8 and 10
Processor Intel Xeon E5-2630 v4
CPU/node 2
Core/CPU 10

CSCcost = (3× ncPPtmax + 6× nzPPtmax)×Rcost

+ (3× ncPPtmax + 3× nzPPtmax)×Wcost

+ (2× ncPPtmax + 5× nzPPtmax)×ACcost

+ 2× nzPPtmax ×OPcost (3)

ELLcost = (2× nrPPtmax + 6× nzPPtmax)×Rcost

+ (4× nrPPtmax + 3× nzPPtmax)×Wcost

+ (1× nrPPtmax + 4× nzPPtmax)×ACcost

+ 2× nzPPtmax ×OPcost (4)

COOcost = (6× nzPPtmax)×Rcost

+ (4× nzPPtmax)×Wcost

+ (6× nzPPtmax)×ACcost

+ 2× nzPPtmax ×OPcost (5)

where

• ACcost is the cost of an array element address comput-

ing (Indirect Access),

• Rcost is the cost of a Reading access,

• Wcost is the cost of a Writing access,

• OPcost is the cost of an arithmetic operation (multipli-

cation or addition).

We note that these costs highly depend on the used hardware

(cache levels, CPU frequency, etc.) and the load of PPtmax.

Thus, they can not be estimated in advance. Indeed, the

proposed costs serve only to explain that the processor load

only is not sufficient to predict the one with minimum

execution time.

Fig. 8: Final result construction

6.2.2 Final result construction
The construction of the final results Y depends on the

used compression format. It is either a reduce or a gather
operation which have different costs. Figure 8 illustrates this

difference using 34 representative matrices from our dataset

(n > 200000).

• Matrix partitioning in row blocks: the case of CSR, ELL

and COO_R format. A gather operation is performed

to collect partial results from each processor (on av-

erage, sending an array of size n/PP ). A sequential

operation of array elements reordering is performed at

the end (Figure 10).

• Matrix partitioning in column blocks: the case of CSC

and COO_C format. A parallel reduce operation is

performed to sum partial results from each processor

(O(log2(n)) operation ’+’). See Figure 9.

6.2.3 MPI process synchronization
Theoretically, PP physical processors start a task in the

same date t0. Which is also the case of synchronization re-

gion (Barrier). Each processor can then execute tasks with

different size/time (Figure 11 (a)). Although, experiments

show that all processor don’t really start together and we

don’t obtain an 100% synchronization(Figure 11 (b)). This is

due to the used execution environment that we can’t predict

or control its behavior. Figure 12 illustrate the gap between

first and last processor beginning. This gap can produce

a false prediction of results (predict the OCF which best
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Table 4: Notation used in equation.

Notation Meaning

PP the number of physical processors

PPload_mx the most loaded processor (with maximum nnz elements)

PPtmax processor with the maximum execution time (tmax)

nzPPtmax number of nnz element in PPtmax

nrPPtmax number of rows in PPtmax

ncPPtmax number of columns in PPtmax

ACcost the cost of an array element address computing (Indirect Access)

Rcost the cost of a Reading access

Wcost the cost of a Writing access

OPcost the cost of an arithmetic operation (multiplication or addition)

Table 5: Data Access

Format #Read #Write #Indirect Access #Operations

CSR 3× nrPPtmax + 6× nzPPtmax 4× nrPPtmax + 3× nzPPtmax 2× nrPPtmax + 4× nzPPtmax 2× nzPPtmax

CSC 3× ncPPtmax + 6× nzPPtmax 3× ncPPtmax + 3× nzPPtmax 2× ncPPtmax + 5× nzPPtmax 2× nzPPtmax

ELL 2× nrPPtmax + 6× nzPPtmax 4× nrPPtmax + 3× nzPPtmax 1× nrPPtmax + 4× nzPPtmax 2× nzPPtmax

COO 6× nzPPtmax 4× nzPPtmax 6× nzPPtmax 2× nzPPtmax

Fig. 9: Reduce operation

Fig. 10: Gather operation

SMVP performances).

7. Conclusions
In this paper, we present performance issue of Sparse

Matrix Vector Product on multiprocessors platform. Our

goal is to study SMVP and extract parameters that impact

its performances. We do not look at optimizing the kernel

but to define metrics that have an impact on the sparse
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Fig. 11: Parallel process scheduling

Fig. 12: Gap between first and last processor

compression format selection process. Indeed, the final aim

of this work is to design and implement an auto-tuner

system for Optimal sparse Compression Format selection.

Our study suggests that it is possible to extract important

parameters that influence performances from the data parallel

programming model. Although, the analysis of algorithms

leads to other models that are dependent on hardware.

Thus, in further work, we propose to derive an approach

using a machine learning method and improve this method

by selecting features from a theoretical study of models

involved in the implementation (for example the data parallel

programming model).
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