

Hierarchical Two-Dimensional Guided Loop Self-

Scheduling for Distributed Systems

Satish Penmatsa
1
 and Akash Laddha

2

1
Department of Computer Science, Framingham State University, Framingham, MA, USA

2
Staples Inc., Framingham, MA, USA

Abstract – Efficient scheduling of large loops inside

computation intensive applications can significantly improve

their performance on distributed computing systems. With

nested loop constructs, multiple levels of partition may need to

be considered for further reducing the application execution

time. With increasing number of processors for executing the

distributed applications, multiple levels of master-worker

processor architecture may need to be considered to improve

the scalability of the loop scheduling schemes. In this paper,

we implement a hierarchical distributed two-dimensional

guided self-scheduling (HDGSS-2D) scheme whose objective

is to minimize the total execution time of an application by a

load balanced allocation of the loop iterations of nested loops

among available processors. HDGSS-2D is implemented and

its performance evaluated using the Stampede high

performance computing cluster at the Texas Advanced

Computing Center of the University of Texas at Austin.

Keywords: Loop scheduling, hierarchical architecture,

distributed systems.

1 Introduction

 Distributed computing systems such as the cloud

computing systems are emerging as viable platforms for

executing computation-intensive applications [1]. Parallel

loop constructs in these applications when scheduled for

concurrent execution on the distributed computing resources

(processors) can significantly improve the performance of

these applications [2]. In static loop scheduling, a scheduler

processor usually pre-computes the set of loop iterations

(chunks) to be executed by the available processors and

allocates them. In dynamic or self-scheduling, idle processors

in the system request the scheduler for new chunks to be

executed by them during run time [5].

The computing resources in distributed systems may be

heterogeneous with varying processor speeds and memory

capacities. Distributed loop scheduling schemes takes this

heterogeneity into account when making allocation decisions.

Also, loops can be nested with multiple levels. Scheduling

schemes may consider partitioning of only the outermost loop

of a nested loop structure when computing the loop chunks

(one-dimensional loop scheduling) or compute the chunks by

considering multiple levels of the nested loop construct

(multi-dimensional loop scheduling) [8].

The different ways of computing the loop chunks has given

rise to different loop scheduling schemes. Examples include:

Chunk self-scheduling (the chunk size is determined by the

user), Pure self-scheduling (chunk size is set to 1), Fixed-size

self-scheduling (total loop iterations are divided by the

number of processors to determine the fixed chunk size),

Trapezoid self-scheduling (chunk sizes are decreased using a

decrement that is computed based on a fixed first and last

chunk, and the total number of chunks), Factoring self-

scheduling (multiple rounds of scheduling with the same

chunk size in each scheduling step), and Guided self-

scheduling (has a non-linear chunk size function with large

initial chunks to reduce communication/scheduling

overheads). Please see [3, 4, 5, 6, 7, and 9] and references

there-in for further details.

Two-dimensional versions of the Trapezoid, Factoring, and

Guided self-scheduling schemes have been presented in [8,

13] and references there-in. Experimental results showed that

the two-dimensional scheduling schemes provide a more load

balanced allocation of tasks to the processors compared to the

one-dimensional schemes.

With a single processor acting as the scheduler (master

processor) for allocating chunks to the available (worker)

processors and gathering results, issues related to scalability,

communication/synchronization overheads, and fault

tolerance may occur. A hierarchical structure with a lower

level consisting of worker processors, several superior levels

of master processors, and a super-master at the top level (of

the hierarchy) would be an option for a solution to the above

mentioned issues.

Hierarchical versions of distributed one-dimensional

Trapezoid, Factoring, and Guided loop self-scheduling

schemes for large-scale clusters and cloud systems have been

presented and analyzed in [1, 2]. Results showed that the

hierarchical schemes exhibit good scalability.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 | 415

ISBN: 1-60132-487-1, CSREA Press ©

In this paper, we implement a hierarchical two-dimensional

distributed Guided self-scheduling scheme (HDGSS-2D) with

two-levels of master processors and compare its performance

with DGSS-2D [13] (with one master processor). We consider

parallel loops without dependencies among loop iterations

(DOALL loops). The schemes are implemented and their

performance compared using the Stampede high performance

computing cluster [10] at the Texas Advanced Computing

Center of the University of Texas at Austin.

2 Two-Dimensional Distributed Guided

Self-Scheduling

In this section, we review the two-dimensional distributed

Guided self-scheduling scheme (DGSS-2D) presented in [13].

Guided Self – Scheduling (GSS) [6, 9] is a dynamic scheme

with a non-linear chunk-size function. It assigns large chunks

(set of iterations) initially, which implies reduced

communication/scheduling overheads in the first scheduling

steps. A modified version GSS(l) with minimum assigned

chunk-size l attempts to improve on the weaknesses of GSS.

One-dimensional distributed Guided self-scheduling scheme

(DGSS-1D) partitions only the outermost loop of a nested

loop construct. Two-dimensional distributed Guided self-

scheduling scheme (DGSS-2D) partitions both the outer loop

and the inner loop of a two-level nested loop construct. The

above schemes were implemented using Master-Worker

architecture [5, 8].

In the following, the DGSS-2D algorithm is presented. The

methodology for computing the two-dimensional chunks is

similar to the one described in [8]. The two-dimensional

chunks will be allocated to the worker processors (PEs) by the

master PE based on the worker available powers [5]. A

worker with higher available power will be allocated more

chunks than compared to a worker with lower available

power.

ALGORITHM: Two-Dimensional Distributed Guided

Self-Scheduling Scheme (DGSS-2D)

MASTER

1. (a) Receive processor speeds (Pj) from the worker PEs

 (j = 1,…,p).

 (b) Compute processor Available (Virtual) Powers, Vj using

 worker PE workloads.

 (c) Send Vj to the worker PEs.

2. (a) While there are unassigned iterations, if a request

 comes, put it in a queue.

 (b) Compute the rectangular chunks and istart1, istart2 [8]

 using DGSS-1D.

 (c) Pick a request from queue with virtual powers Vj and

 assign next Vj rectangular chunk along same or adjacent

 wavefront diagonals.

WORKER

1. (a) Send processor speed (Pj) to the Master PE.

 (b) Receive Virtual Power (Vj) from Master PE

2. Send a request for work (chunks of loop iterations).

3. (a) Wait for a response from Master.

 (b) If more tasks arrive, compute the new task, and go to

 Step 2. Else, Terminate.

3 Hierarchical Two-Dimensional

Distributed Guided Self-Scheduling

In hierarchical self-scheduling, instead of making one master

process (processor) responsible for all the workload (chunks)

distribution, multiple master processes are introduced [1, 2].

For example, a three-level hierarchical structure (with two-

levels of master processors) would have all the worker

processors at the bottom, a set of master processors to oversee

the set of workers (by allocating chunks and collecting results)

at the next higher level, and a super-master to oversee the

masters at the top level.

Figure 1 presents the hierarchical structure of HDGSS-2D

with two levels of master processes. The worker processes

(W) are at the bottom. The super-master uses DGSS-2D to

allocate chunks (loop iterations) to the master processes. The

master processes in turn allocate chunks to the worker

processes (using DGSS-2D). The master processes do not

perform any computation but assign tasks to the workers from

the pool of tasks they obtain from the super-master.

Initially, the super-master computes the available (virtual)

powers of the masters based on their worker processing

speeds. When a request from a master comes to the super-

master, if there are any unassigned iterations (rectangular

(2D) chunks) (computed based on DGSS-2D), the next

rectangular chunk will be computed and sent to the master

based on its virtual power. Similarly, when a request from a

worker comes to the master, if there are any unassigned

iterations (from those obtained from the super-master), the

next rectangular chunk will be computed and sent to the

worker based on its virtual power. Any results that are

computed by the workers will be sent to the masters who in

turn send them to the super-master (aggregation of results).

416 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 |

ISBN: 1-60132-487-1, CSREA Press ©

Figure 1: Hierarchical DGSS-2D (Two levels of masters)

4 Implementation and Results

The non-hierarchical and hierarchical two-dimensional

Guided loop self-scheduling schemes (DGSS-2D and

HDGSS-2D respectively) were implemented using the

Message Passing Interface [11] on the Stampede [10] high

performance computing cluster at the Texas Advanced

Computing Center of the University of Texas at Austin. The

test problem used for the experiments is the Mandelbrot

Computation [12]. The Mandelbrot Computation is a doubly-

nested loop without any dependencies. The schemes are

implemented with the number of worker processors ranging

from 16 to 64 and the Mandelbrot computation sizes ranging

from 16000 x 16000 to 64000 x 64000.

To create a heterogeneous environment, we put an artificial

load (one continuously running matrix multiplication process)

in the background on half of the worker processors (similar to

[13]). The workers with one load in the background are

assumed to have virtual power of 1 and the workers without

any load are assumed to have virtual power of 2. Thus, we

have half fast and half slow worker processors.

In the following, we present the experimental results for

various problem sizes and number of worker processors. All

timings are in seconds.

Figure 2 presents the total execution time for computing the

test problem using DGSS-2D and HDGSS-2D for a problem

size of 16000 x 16000 with number of worker processors

ranging from 16 to 64. It can be observed that the hierarchical

scheduling scheme performs better than the non-hierarchical

one in terms of the total execution time. For example, when

the number of worker processors is 16, the total execution

time of HDGSS-2D is about 10% less than that of DGSS-2D

and when the number of worker processors is 32, the total

execution time of HDGSS-2D is about 20% less than that of

DGSS-2D. The performance improvement is around 25%

when the number of worker processors is increased to 64.

Figure 2: Problem Size – 16000 x 16000

Figure 3 presents the total execution time when using DGSS-

2D and HDGSS-2D for a problem size of 24000 x 24000 with

varying number of processors. It can be observed that there is

a considerable reduction in the total execution time with

HDGSS-2D compared to that of DGSS-2D. For example,

when the number of worker processors is 64, the total

execution time of HDGSS-2D is about 25% less than that of

DGSS-2D. HDGSS-2D super-master distributes the work to

the master processes that helps decentralize the chunk

distribution and reduces the queuing/communication time

between the processors to better load balance the application.

Figure 3: Problem Size – 24000 x 24000

In Figure’s 4 and 5, we present the total execution time for

computing the test problem when using the guided scheduling

schemes for problem sizes of 32000 x 32000 and 64000 x

64000 respectively. The performance improvement with

HDGSS-2D can again be observed. For example, for a

problem size of 32000 x 32000 and when the number of

worker processors is 32, the total execution time of HDGSS-

2D is about 21% less than that of DGSS-2D, and for a

problem size of 64000 x 64000 and when the number of

worker processors is 32, the total execution time of HDGSS-

2D is about 25% less than that of DGSS-2D. For a problem

size of 32000 x 32000 and when the number of worker

processors is 64, the total execution time of HDGSS-2D is

Super-master

Master Master

W

or

ke

r

W

or

ke

r

W

or

ke

r

W

or

ke

r

W

or

ke

r

W

or

ke

r

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 | 417

ISBN: 1-60132-487-1, CSREA Press ©

about 26% less than that of DGSS-2D, and for a problem size

of 64000 x 64000 and when the number of worker processors

is 64, the total execution time of HDGSS-2D is about 29%

less than that of DGSS-2D.

Figure 4: Problem Size – 32000 x 32000

Figure 5: Problem Size – 64000 x 64000

5 Conclusions

In this work, we implemented a hierarchical distributed two-

dimensional Guided loop self-scheduling scheme (HDGSS-

2D) and compared its performance with the non-hierarchical

DGSS-2D. Based on the experimental results, it was observed

that HDGSS-2D performs better then DGSS-2D and the total

execution time of the test problem is reduced by about 29%

for larger problem sizes and increasing number of worker

processors. The hierarchical structure decentralizes the

workload distribution and reduces the queuing/communication

time between the worker and master processes. In future

work, we plan to further test the scalability of the hierarchical

scheme with increasing number of worker processors and

more number of master processor levels.

6 References

[1] Y. Han and A. T. Chronopoulos, “A hierarchical

distributed loop self-scheduling scheme for cloud systems”,

12
th

IEEE Intl. Symp. on Network Computing and

Applications, pp. 7 – 10, 2013.

[2] Y. Han and A. T. Chronopoulos, “Scalable loop self-

scheduling schemes implemented on large-scale clusters”,

IEEE International Symposium on Parallel & Distributed

Proc., Workshops and Phd Forum, pp. 1735 – 1742, 2013.

[3] I. Banicescu, V. Velusamy, and J. Devaprasad, “On the

scalability of dynamic scheduling scientific applications with

adaptive weighted factoring”, Cluster Computing, vol. 6, pp.

215–226, 2003.

[4] A. Kejariwal, A. Nicolau, and C. Polychronopoulos,

“History-aware self-scheduling”, Intl. Conference on Parallel

Processing, Columbus OH, Aug 2006, pp. 185–192.

[5] A. T. Chronopoulos, S. Penmatsa, J. Xu, and S. Ali,

“Distributed loop-scheduling schemes for heterogeneous

computer systems”, Concurrency and Computation: Practice

and Experience, vol. 18, no. 7, pp. 771–785, 2006.

[6] C. D. Polychronopoulos and D. Kuck, “Guided self-

scheduling: A practical scheduling scheme for parallel

supercomputers”, IEEE Trans. on Computers, 1987; 36:1425–

1439.

[7] J. Herrera, E. Huedo, R. S. Montero, and I. M. Llorente,

“Loosely-coupled loop scheduling in computational grids”, in

Proc. of the 20th IEEE Intl. Parallel and Distributed

Processing Symp., Greece, pp. 25-29 April 2006.

[8] A. T. Chronopoulos, L. M. Ni, and S. Penmatsa,

“Multidimensional dynamic loop scheduling algorithms”, in

IEEE International Conference on Cluster Computing, Austin,

TX, 17-20 Sept. 2007, pp. 241 – 248.

[9] T. L. Freeman, D. J. Hancock, J. M. Bull, and R. W. Ford,

“Feedback guided scheduling of nested loops”, Proc. of the 5
th

International Applied Parallel Computing (PARA) Workshop,

Bergen, Norway, 2000 (Lecture Notes in Computer Science,

vol. 1947), Springer: Berlin, 2001; 149–159.

[10] https://www.tacc.utexas.edu/systems/stampede

[11] P. Pachecho, “Parallel Programming with MPI”, Morgan

Kauffman, 1997.

[12] M. F. Bransley, R. L. Devaney, B. B. Mandelbrot, H. O.

Peitgen, D. Saupe, R. F. Voss, Y. Fisher, and M. McGuire,

“The science of fractal images”, NY: Springer-Verlag, 1988.

[13] S. Penmatsa and A. Laddha, “Distributed two-

dimensional guided loop self-scheduling for heterogeneous

computer systems”, 21
st
 International Conference on Parallel

and Distributed Processing Techniques and Applications

(PDPTA), July 27-30, Las Vegas, NV, USA, 2015.

418 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'18 |

ISBN: 1-60132-487-1, CSREA Press ©

https://www.tacc.utexas.edu/systems/stampede

