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Abstract – Efficient scheduling of large loops inside 

computation intensive applications can significantly improve 

their performance on distributed computing systems. With 

nested loop constructs, multiple levels of partition may need to 

be considered for further reducing the application execution 

time. With increasing number of processors for executing the 

distributed applications, multiple levels of master-worker 

processor architecture may need to be considered to improve 

the scalability of the loop scheduling schemes. In this paper, 

we implement a hierarchical distributed two-dimensional 

guided self-scheduling (HDGSS-2D) scheme whose objective 

is to minimize the total execution time of an application by a 

load balanced allocation of the loop iterations of nested loops 

among available processors. HDGSS-2D is implemented and 

its performance evaluated using the Stampede high 

performance computing cluster at the Texas Advanced 

Computing Center of the University of Texas at Austin.  

Keywords: Loop scheduling, hierarchical architecture, 

distributed systems. 

 

1 Introduction 

 Distributed computing systems such as the cloud 

computing systems are emerging as viable platforms for 

executing computation-intensive applications [1]. Parallel 

loop constructs in these applications when scheduled for 

concurrent execution on the distributed computing resources 

(processors) can significantly improve the performance of 

these applications [2]. In static loop scheduling, a scheduler 

processor usually pre-computes the set of loop iterations 

(chunks) to be executed by the available processors and 

allocates them. In dynamic or self-scheduling, idle processors 

in the system request the scheduler for new chunks to be 

executed by them during run time [5].  

The computing resources in distributed systems may be 

heterogeneous with varying processor speeds and memory 

capacities. Distributed loop scheduling schemes takes this 

heterogeneity into account when making allocation decisions. 

Also, loops can be nested with multiple levels. Scheduling 

schemes may consider partitioning of only the outermost loop  

 

of a nested loop structure when computing the loop chunks 

(one-dimensional loop scheduling) or compute the chunks by 

considering multiple levels of the nested loop construct 

(multi-dimensional loop scheduling) [8]. 

The different ways of computing the loop chunks has given 

rise to different loop scheduling schemes. Examples include: 

Chunk self-scheduling (the chunk size is determined by the 

user), Pure self-scheduling (chunk size is set to 1), Fixed-size 

self-scheduling (total loop iterations are divided by the 

number of processors to determine the fixed chunk size), 

Trapezoid self-scheduling (chunk sizes are decreased using a 

decrement that is computed based on a fixed first and last 

chunk, and the total number of chunks), Factoring self-

scheduling (multiple rounds of scheduling with the same 

chunk size in each scheduling step), and Guided self-

scheduling (has a non-linear chunk size function with large 

initial chunks to reduce communication/scheduling 

overheads). Please see [3, 4, 5, 6, 7, and 9] and references 

there-in for further details.  

Two-dimensional versions of the Trapezoid, Factoring, and 

Guided self-scheduling schemes have been presented in [8, 

13] and references there-in. Experimental results showed that 

the two-dimensional scheduling schemes provide a more load 

balanced allocation of tasks to the processors compared to the 

one-dimensional schemes.  

With a single processor acting as the scheduler (master 

processor) for allocating chunks to the available (worker) 

processors and gathering results, issues related to scalability, 

communication/synchronization overheads, and fault 

tolerance may occur. A hierarchical structure with a lower 

level consisting of worker processors, several superior levels 

of master processors, and a super-master at the top level (of 

the hierarchy) would be an option for a solution to the above 

mentioned issues.  

Hierarchical versions of distributed one-dimensional 

Trapezoid, Factoring, and Guided loop self-scheduling 

schemes for large-scale clusters and cloud systems have been 

presented and analyzed in [1, 2]. Results showed that the 

hierarchical schemes exhibit good scalability.  
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In this paper, we implement a hierarchical two-dimensional 

distributed Guided self-scheduling scheme (HDGSS-2D) with 

two-levels of master processors and compare its performance 

with DGSS-2D [13] (with one master processor). We consider 

parallel loops without dependencies among loop iterations 

(DOALL loops). The schemes are implemented and their 

performance compared using the Stampede high performance 

computing cluster [10] at the Texas Advanced Computing 

Center of the University of Texas at Austin.  

2 Two-Dimensional Distributed  Guided 

Self-Scheduling  

In this section, we review the two-dimensional distributed 

Guided self-scheduling scheme (DGSS-2D) presented in [13]. 

Guided Self – Scheduling (GSS) [6, 9] is a dynamic scheme 

with a non-linear chunk-size function. It assigns large chunks 

(set of iterations) initially, which implies reduced 

communication/scheduling overheads in the first scheduling 

steps. A modified version GSS(l) with minimum assigned 

chunk-size l attempts to improve on the weaknesses of GSS.  

One-dimensional distributed Guided self-scheduling scheme 

(DGSS-1D) partitions only the outermost loop of a nested 

loop construct. Two-dimensional distributed Guided self-

scheduling scheme (DGSS-2D) partitions both the outer loop 

and the inner loop of a two-level nested loop construct. The 

above schemes were implemented using Master-Worker 

architecture [5, 8]. 

In the following, the DGSS-2D algorithm is presented. The 

methodology for computing the two-dimensional chunks is 

similar to the one described in [8]. The two-dimensional 

chunks will be allocated to the worker processors (PEs) by the 

master PE based on the worker available powers [5]. A 

worker with higher available power will be allocated more 

chunks than compared to a worker with lower available 

power. 

ALGORITHM: Two-Dimensional Distributed Guided 

Self-Scheduling Scheme (DGSS-2D) 

MASTER 

1. (a) Receive processor speeds (Pj) from the worker PEs  

  (j = 1,…,p). 

    (b) Compute processor Available (Virtual) Powers, Vj using 

 worker PE workloads. 

    (c)  Send Vj to the worker PEs.  

2. (a) While there are unassigned iterations, if a request 

 comes, put it in a queue. 

     (b) Compute the rectangular chunks and istart1, istart2 [8] 

 using DGSS-1D.  

     (c) Pick a request from queue with virtual powers Vj and 

 assign next Vj rectangular chunk along same or adjacent 

 wavefront diagonals. 

WORKER 

1. (a) Send processor speed (Pj) to the Master PE. 

    (b) Receive Virtual Power (Vj) from Master PE 

2. Send a request for work (chunks of loop iterations). 

3. (a) Wait for a response from Master. 

 (b)  If more tasks arrive, compute the new task, and go to   

 Step 2.  Else, Terminate. 

3 Hierarchical Two-Dimensional 

Distributed Guided Self-Scheduling  

In hierarchical self-scheduling, instead of making one master 

process (processor) responsible for all the workload (chunks) 

distribution, multiple master processes are introduced [1, 2]. 

For example, a three-level hierarchical structure (with two-

levels of master processors) would have all the worker 

processors at the bottom, a set of master processors to oversee 

the set of workers (by allocating chunks and collecting results) 

at the next higher level, and a super-master to oversee the 

masters at the top level. 

Figure 1 presents the hierarchical structure of HDGSS-2D 

with two levels of master processes. The worker processes 

(W) are at the bottom. The super-master uses DGSS-2D to 

allocate chunks (loop iterations) to the master processes. The 

master processes in turn allocate chunks to the worker 

processes (using DGSS-2D). The master processes do not 

perform any computation but assign tasks to the workers from 

the pool of tasks they obtain from the super-master.  

Initially, the super-master computes the available (virtual) 

powers of the masters based on their worker processing 

speeds. When a request from a master comes to the super-

master, if there are any unassigned iterations (rectangular 

(2D) chunks) (computed based on DGSS-2D), the next 

rectangular chunk will be computed and sent to the master 

based on its virtual power. Similarly, when a request from a 

worker comes to the master, if there are any unassigned 

iterations (from those obtained from the super-master), the 

next rectangular chunk will be computed and sent to the 

worker based on its virtual power. Any results that are 

computed by the workers will be sent to the masters who in 

turn send them to the super-master (aggregation of results).  

416 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'18  |

ISBN: 1-60132-487-1, CSREA Press ©



 

 

Figure 1: Hierarchical DGSS-2D (Two levels of masters) 

4  Implementation and Results  

The non-hierarchical and hierarchical two-dimensional 

Guided loop self-scheduling schemes (DGSS-2D and 

HDGSS-2D respectively) were implemented using the 

Message Passing Interface [11] on the Stampede [10] high 

performance computing cluster at the Texas Advanced 

Computing Center of the University of Texas at Austin. The 

test problem used for the experiments is the Mandelbrot 

Computation [12]. The Mandelbrot Computation is a doubly-

nested loop without any dependencies. The schemes are 

implemented with the number of worker processors ranging 

from 16 to 64 and the Mandelbrot computation sizes ranging 

from 16000 x 16000 to 64000 x 64000.  

To create a heterogeneous environment, we put an artificial 

load (one continuously running matrix multiplication process) 

in the background on half of the worker processors (similar to 

[13]). The workers with one load in the background are 

assumed to have virtual power of 1 and the workers without 

any load are assumed to have virtual power of 2. Thus, we 

have half fast and half slow worker processors. 

In the following, we present the experimental results for 

various problem sizes and number of worker processors. All 

timings are in seconds. 

Figure 2 presents the total execution time for computing the 

test problem using DGSS-2D and HDGSS-2D for a problem 

size of 16000 x 16000 with number of worker processors 

ranging from 16 to 64. It can be observed that the hierarchical 

scheduling scheme performs better than the non-hierarchical 

one in terms of the total execution time. For example, when 

the number of worker processors is 16, the total execution 

time of HDGSS-2D is about 10% less than that of DGSS-2D 

and when the number of worker processors is 32, the total 

execution time of HDGSS-2D is about 20% less than that of 

DGSS-2D. The performance improvement is around 25% 

when the number of worker processors is increased to 64. 

 

Figure 2:  Problem Size – 16000 x 16000 

 

Figure 3 presents the total execution time when using DGSS-

2D and HDGSS-2D for a problem size of 24000 x 24000 with 

varying number of processors. It can be observed that there is 

a considerable reduction in the total execution time with 

HDGSS-2D compared to that of DGSS-2D. For example, 

when the number of worker processors is 64, the total 

execution time of HDGSS-2D is about 25% less than that of 

DGSS-2D. HDGSS-2D super-master distributes the work to 

the master processes that helps decentralize the chunk 

distribution and reduces the queuing/communication time 

between the processors to better load balance the application. 

 

Figure 3:  Problem Size – 24000 x 24000 

In Figure’s 4 and 5, we present the total execution time for 

computing the test problem when using the guided scheduling 

schemes for problem sizes of 32000 x 32000 and 64000 x 

64000 respectively. The performance improvement with 

HDGSS-2D can again be observed. For example, for a 

problem size of 32000 x 32000 and when the number of 

worker processors is 32, the total execution time of HDGSS-

2D is about 21% less than that of DGSS-2D, and for a 

problem size of 64000 x 64000 and when the number of 

worker processors is 32, the total execution time of HDGSS-

2D is about 25% less than that of DGSS-2D. For a problem 

size of 32000 x 32000 and when the number of worker 

processors is 64, the total execution time of HDGSS-2D is 

Super-master 

Master Master 

W

or

ke

r 

W

or

ke

r 

W

or

ke

r 

W

or

ke

r 

W

or

ke

r 

W

or

ke

r 

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. |  PDPTA'18  | 417

ISBN: 1-60132-487-1, CSREA Press ©



 

about 26% less than that of DGSS-2D, and for a problem size 

of 64000 x 64000 and when the number of worker processors 

is 64, the total execution time of HDGSS-2D is about 29% 

less than that of DGSS-2D. 

 

Figure 4:  Problem Size – 32000 x 32000 

 

 

Figure 5:  Problem Size – 64000 x 64000 

 

5 Conclusions  

In this work, we implemented a hierarchical distributed two-

dimensional Guided loop self-scheduling scheme (HDGSS-

2D) and compared its performance with the non-hierarchical 

DGSS-2D. Based on the experimental results, it was observed 

that HDGSS-2D performs better then DGSS-2D and the total 

execution time of the test problem is reduced by about 29% 

for larger problem sizes and increasing number of worker 

processors. The hierarchical structure decentralizes the 

workload distribution and reduces the queuing/communication 

time between the worker and master processes. In future 

work, we plan to further test the scalability of the hierarchical 

scheme with increasing number of worker processors and 

more number of master processor levels. 
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