Analyzing Order of Domains in Grammar-based Compression of Proteomes

M. Hayashida¹, K. Ishibashi¹, and H. Koyano²

¹Department of Electrical Engineering and Computer Science, National Institute of Technology, Matsue College, Matsue, Shimane, Japan
²School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan

Abstract—In an evolutionary process, the DNA nucleotide sequences of an organism have been made to construct a living individual. Several genes were duplicated, and nucleotide sequences have been modified by the emancipation from natural selection. From the viewpoint of compression, the identical subsequences can be replaced with the same symbol. In the previous study, a protein was regarded as a set of domains, and the proteome in an organism was compressed based on a grammar concerning sets. In this study, we regard a protein as a sequence of domains, propose an adequate grammar to compress a proteome, and compare the compression results between cases of considering with and without the order of domains in a protein for seven organisms, Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and Homo sapiens.

Keywords: Grammar-based compression, Gene duplication, Protein domain

1. Introduction

The high-throughput sequencing technology has rapidly grown data of DNA and protein sequences. In order to store, to do processing, and to analyze mass sequencing data, many compression methods have been developed. For DNA sequences, biocompress-2 compresses the sequence by detecting regularities including the presence of palindromes [1]. Cfact algorithm makes use of suffix trees, and detects the longest exact matching repeat [2]. GenCompress finds approximate matches satisfying the condition that the length of sequence of edit operations, insertion, deletion, and substitution, is less than a threshold [3]. CTW+LZ combines CTW (Context Tree Weighting) method [4] and LZ (Lempel Ziv) algorithm [5] to encode long repeating subsequences [6]. DNACompress finds approximate repeats including complemented palindromes using PatternHunter [7], which achieved better compression ratios than GenCompress and CTW+LZ [8]. Expert model (XM) was proposed to estimate the probability distribution of the next symbol in the sequence. Their method compressed better than biocompress-2, GenCompress, DNACompress, DNAPack [9], CDNA [10], and GeMNL [11] for most DNA sequences, and better than CP [12] and CTW+LZ, and slightly better than ProtComp [13] for protein sequences [14].

Hosseini et al. comprehensively compared existing compression approaches for biological data in different file formats, and reported that MFCompress [15] outperformed DELIMINATE [16], gzip [17], and LZMA [18] in terms of compression ratio for genomic sequences in multi-FASTA, and that SCALCE [19] outperformed Fqzcomp [20], Quip [21], DSRC [22], gzip, and LZMA for FASTQ sequences, which include the quality scores [23]. CaBLASTP achieved a faster speed than BLAST by searching in the compressed database [24]. CAD uses a changing dictionary of actively used amino acid residues in addition to Huffman coding, and achieved better compression rates than existing compression algorithms [25].

Another approach to compression of a proteome was proposed [26], where amino acid sequences were not directly compressed. From an evolutionary point of view, they focused on the process that proteins have obtained functions and domains, regarded a protein as a set of domains, and compressed a set of sets of domains. It was reported that the ratio of the compressed size to the original size was smaller in higher organisms such as Homo sapiens and Mus musculus, and the same domain would be frequently utilized in higher organisms.

In this study, we regard a protein as a sequence of domains to analyze the order of domains in a protein, and propose a grammar-based compression method for a set of sequences of domains. Then, we compare the compression results between cases of considering with and without the order of domains in a protein for seven organisms, Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and Homo sapiens.

2. Methods

In this section, we briefly review the previous compression method for a set of sets of domains [26], and propose our compression method by extending the previous method.

2.1 Compression with domains unordered

In a general way, all identical data are replaced with the same symbol during compression processes. If a protein has
the same subset of domains as another protein, the subset should be replaced with the same symbol. On the other hand, in the evolutionary process, genetic sequences have been copied from another part of chromosome, and the duplicated sequences can be compressed. Following the evolutionary model by Nacher et al. [27], mutation, gene duplication and fusion events were introduced into their grammar for sets of domains, which consists of three types of production rules, R1, R2, and R3. Suppose that \(\mathcal{P} \) and \(\mathcal{D} \) are the set of proteins and the set of domains in a given proteome, respectively, where each protein \(P_i \in \mathcal{P} \) consists of domains in \(\mathcal{D} \).

In a production rule of R1, it is assumed that all domains in protein \(P_i \) are created by several mutation events, which rule can be represented as \(P_i = \{D_{i1}, D_{i2}, \ldots\} \). Then, the cost was defined by

\[
\text{cost}_{R1}(P_i) = \lceil \log |D| \rceil \cdot |P_i|, \tag{1}
\]

where the base of the logarithm is two, \(\lceil x \rceil \) is the integer more than or equal to \(x \), and \(|S| \) denotes the number of elements in a set \(S \). It should be noted that \(P_i \) can be a multiset, that is, multiple instances of the same domain can be included, and \(|P_i| \) is the sum of multiplicities of domains. It takes \(\lceil \log |D| \rceil \) bits to represent the identifier of one domain.

In a production rule of R2, it is assumed that protein \(P_i \) is constructed by duplicating \(P_j \) and by deletion and insertion of several domains, which rule can be represented as \(P_i = P_j \setminus \{D_{j1}, \ldots\} + \{D_{i1}, \ldots\} \). Then, the cost was defined by

\[
\text{cost}_{R2}(P_i; P_j) = \lceil \log |P| \rceil + |P_j| + |P_i| - |P_j| - |P_i|, \tag{2}
\]

where \(S - T \) for multisets \(S \) and \(T \) denotes the multiset removing elements included in \(T \) from \(S \). Among domains of \(P_j \), only the domain that the corresponding bit is one is duplicated.

In a production rule of R3, it is assumed that protein \(P_i \) is constructed by duplicating \(P_j \) and \(P_k \) and by inserting several domains, which rule can be represented as \(P_i = P_j + P_k + \{D_{i1}, \ldots\} \). Then, the cost was defined by

\[
\text{cost}_{R3}(P_i; P_j, P_k) = 2 \cdot \lceil \log |P| \rceil + |P_j| + |P_i| - |P_j| - |P_i| \tag{3}
\]

Let \(r_i \in \{R1, R2, R3\} \) be a rule constructing \(P_i \). The size of the grammar \(\mathcal{G} \) is represented by

\[
|\mathcal{G}| = \sum_{P_i \in \mathcal{P}} \text{cost}_{r_i}(P_i). \tag{4}
\]

They tried to find a grammar by minimizing the size \(|\mathcal{G}|\) through the minimum spanning directed hypertree problem \([28]\). The problem, however, was intractable for a large number of proteins, and they developed a heuristic method that reduces candidate production rules. Without use of production rules of R3, we can solve the problem in polynomial time for finding the minimum grammar with only R1 and R2 production rules.

2.2 Compression with domains ordered

In this study, we deal with only mutation and gene duplication events for compressing sequences of domains because we can find the minimum grammar. Suppose that \(P_i \) also represents a sequence of domains. Similar to a production rule of R1 in the previous study, a sequence of domains in protein \(P_i \) can be represented by writing identifiers in the same order, that is, its rule can be represented as \(P_i = D_{i1}, D_{i2}, \ldots, D_{ijn} \). Then, the cost that \(P_i \) is constructed from domains is equivalent to that in the previous study.

\[
\text{cost}_{R1}(P_i) = \lceil \log |D| \rceil \cdot |P_i|. \tag{5}
\]

In the case of gene duplication from \(P_j \) to \(P_i \), the sequence of domains in \(P_j \) is copied, and domains specified by \(|P_j| \) bits are deleted. After that, several domains are inserted. There, however, can be several different ways to insert domains into the sequence. For example, consider \(P_i = D_{j1} D_{j2} D_{j3} \) and \(P_j = D_{1} D_{2} D_{3} \). To transform \(P_j \) into \(P_i \), we may delete \(D_{j1} D_{j2} \) and insert \(D_{1} D_{2} D_{3} \) in front of the sequence. In another way, we may delete the first \(D_{1} \), and insert \(D_{3} \) between \(D_{2} \) and \(D_{1} \). For our purpose of finding the minimum grammar, we utilize the Levenshtein distance \(d_L(P_j, P_i) \) from \(P_j \) to \(P_i \), which is defined by the minimum cost of edit operations, insertion, deletion, and substitution [29]. Since domains to be deleted are specified by \(|P_j| \) bits, we set the cost of deletion to be zero, and those of insertion and substitution to be one, respectively. Then, the cost that \(P_i \) is constructed from \(P_j \) is defined by

\[
\text{cost}_{R2}(P_i; P_j) = \lceil \log |D| \rceil + |P_j| + d_L(P_j, P_i) \cdot \lceil \log |P| \rceil + |\log (|P_j| + 1)| \tag{6}
\]

where \(|P_j| + 1 \) means the number of positions to be inserted into \(P_j \). In this rule, the position together with the identifier of an inserted domain is specified.

In order to find the minimum grammar consisting of production rules of R1 and R2, we construct a directed graph \(G(V, E) \) with a set \(V \) of vertices and a set \(E \) of directed edges. \(V \) consists of \(v_0 \) (\(P_0 \notin \mathcal{P} \)) and \(v_i \) for all \(P_i \in \mathcal{P} \). \(E \) consists of \((v_0, v_i) \) and \((v_j, v_i) \) for all \(P_i, P_j \in \mathcal{P} \), where \(\text{cost}((v_0, v_i)) = \text{cost}_{R1}(P_i) \) and \(\text{cost}((v_j, v_i)) = \text{cost}_{R2}(P_i; P_j) \). Then, from the minimum spanning tree of \(G \), we can obtain the minimum grammar \(\mathcal{G} \) that constructs the given set of sequences of domains.

3. Results

We used protein domain compositions of seven organisms, \(E. coli, S. cerevisiae, A. thaliana, C. elegans, D.
The compressed size for ordered domains was about four domains ordered to that with domains unordered, in *E. coli* have been used more frequently in higher organisms. It insists that gene duplications smaller than those of others as reported in the previous study. Also for proteomes with domains ordered, we smaller than those of other organisms as reported in the previous study. Furthermore, from comparison between the ratios of the compressed size for ordered domains to that for unordered domains, it can be considered in higher organisms that several proteins have changed the functions by replacing domains. As future work, we would like to compress and analyze more organisms, and to obtain comprehensive knowledge for evolutionary processes.

4. Conclusion

We proposed a grammar to compress a proteome with domains ordered by extending the grammar for a set of sets of domains. By finding the minimum grammars of proteomes, we compared evolutionary process of seven organisms, *E. coli, S. cerevisiae, A. thaliana, C. elegans, D. melanogaster, M. musculus, and H. sapiens*. As a result, we confirmed that the compression ratio for higher organisms was smaller than that for others as reported in the previous study. Furthermore, from comparison between the ratios of the compressed size for ordered domains to that for unordered domains, it can be considered in higher organisms that several proteins have changed the functions by replacing domains. As future work, we would like to compress and analyze more organisms, and to obtain comprehensive knowledge for evolutionary processes.

Acknowledgements

This work was partially supported by Grants-in-Aid #16K00392, and #16KT0020 from JSPS, Japan.

References

Table 1: Results on the compressed size by considering domains ordered and unordered for organisms, *E. coli*, *S. cerevisiae*, *A. thaliana*, *C. elegans*, *D. melanogaster*, *M. musculus*, and *H. sapiens*. ‘original’ denotes the sum of costs in the case that all proteins are constructed only by production rules of R1, that is, \[\sum_{P_i \in P} \text{cost}_{R1}(P_i) \], which is equivalent between ordered and unordered cases.

<table>
<thead>
<tr>
<th>organism</th>
<th># proteins</th>
<th># domains</th>
<th>original</th>
<th>ordered (A)</th>
<th>unordered (B)</th>
<th>A/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>880</td>
<td>284</td>
<td>18801</td>
<td>13949</td>
<td>13777</td>
<td>0.7328</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>1296</td>
<td>352</td>
<td>28260</td>
<td>21263</td>
<td>21000</td>
<td>0.7431</td>
</tr>
<tr>
<td>A. thaliana</td>
<td>4993</td>
<td>398</td>
<td>111375</td>
<td>81728</td>
<td>81349</td>
<td>0.7304</td>
</tr>
<tr>
<td>C. elegans</td>
<td>1104</td>
<td>389</td>
<td>30960</td>
<td>23434</td>
<td>22462</td>
<td>0.7255</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>991</td>
<td>389</td>
<td>29034</td>
<td>20645</td>
<td>19762</td>
<td>0.6807</td>
</tr>
<tr>
<td>M. musculus</td>
<td>5820</td>
<td>630</td>
<td>191720</td>
<td>119448</td>
<td>115177</td>
<td>0.6008</td>
</tr>
<tr>
<td>H. sapiens</td>
<td>6886</td>
<td>626</td>
<td>226530</td>
<td>138889</td>
<td>134170</td>
<td>0.5923</td>
</tr>
</tbody>
</table>

[18] http://www.7-zip.org/sdk.html.

